Tampilkan postingan dengan label Limits of algebraic functions. Tampilkan semua postingan
Tampilkan postingan dengan label Limits of algebraic functions. Tampilkan semua postingan

LIMIT FUNGSI ALJABAR

 A. Pendahuluan

Mengingat kembali definisi limit yang telah dipelajari sebelumnya di kelas XI, yaitu limit fungsi aljabar f(x) yang didefinisikan dengan:

limxaf(x)=LadalahJikaxmendekatiadengan tidak sama dengana,maka nilaif(x)mendekatiL.

Perhatikan definisi di atas istilah  xmendekatia dituliskan dengan simbol  (xa). Suatu nilai limit dianggap ada jika nilai f(x) mendekati  a dari arah kiri sama dengan nilai f(x) mendekati  a dari arah kanan dengan nilai yang sama misalnya L. Jika disimbolkan pernyataan ini menjadi berikut

limxaf(x)=limxa+f(x)=limxaf(x)=L .

Perlu diperhatikan bahwa didekati darikiridisimbolkan denganlimxaf(x),dankanandisimbolkan denganlimxa+f(x).

CONTOH SOAL.

1.Tentukanlah nilai limit darif(x)=x24x2Jawab:Perhatikanlah ketika fungsix24x2di sekitarx=2sebagaimana dalam tabelberikut.


.Jadi, nilailimx2x24x2=2atau dapat dikatakannilailimx2x24x2adameskipun nilai substitusi langsungx=2yaituf(0)=02000=00berupa bentuk taktentu. Berikut ilustrasinya


2.Selidikilah limit fungsi berikut apakahmemiliki harga limitlimx5f(x),untukf(x)={xsaatx<55xsaatx5Jawab:Perhatikanlah ketika didekati dari kiri yaitux5,makalimx5f(x)=xataulimx5f(x)=5boleh juga dituliskan denganlimx5f(x)=x=5.Sedangkan ketikadidekati dari arah kanan yaitux5+,makalimx5+f(x)=limx5+(5x)=55=0.Karena nilailimx5f(x)limx5+f(x),makanilai atau hargalimx5f(x)tidak adaBerikut ilustrasi gambarnya.
3.Selidikilah limit fungsi berikut apakahmemiliki harga limitlimx0f(x),untukf(x)=cosxJawab:Perhatikanlah ketika didekati dari kiri yaitux0,makalimx0cosxx0,50,40,30,20,10cosx......0,9999860,9999940,99999851Sedangkan ketikadidekati dari arah kanan yaitux0+,makalimx0+cosxx00,10,20,30,40,5cosx10,99999850,9999940,999986......Karena nilailimx0f(x)=limx0+f(x)=1,makanilailimx0cosx adaBerikut ilustrasi gambarnya.

B. Sifat-Sifat Limit Fungsi

Misalkanfdangadalah fungsi-fungsi yangmempunyai nilai limit di titik sekitarx=aatau(xa)dancadalah suatu konstantasertanadalah suatu bilangan bulat positif,maka berlaku sifat-sifat berikut:1.limxac=c2.limxaxn=an3.limxac.f(x)=c.limxaf(x)4.limxa(f(x)±g(x))=limxaf(x)±limxag(x)5.limxa(f(x)×g(x))=limxaf(x)×limxag(x)6.limxaf(x)g(x)=limxaf(x)limxag(x)7.limxa(f(x))n=[limxaf(x))]n8.limxaf(x)n=limxf(x)n,denganlimxaf(x)0danngenap