Contoh 8 Soal dan Pembahasan Materi Hubungan Dua Lingkaran

 $\begin{array}{ll}\\ 36.&\textrm{Persamaan lingkaran yang menyinggung}\\ &\textrm{sumbu X serta melalui titik potong}\\ &\textrm{lingkaran}\: \: (x+1)^{2}+(y+2)^{2}=1\: \: \textrm{dan}\\ &x^{2}+y^{2}+3x+3y+4=0\: \: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad x^{2}+y^{2}-4x+2y+4=0\\ &\textrm{b}.\quad x^{2}+y^{2}-4x+2y-4=0\\ &\textrm{c}.\quad x^{2}+y^{2}-4x-2y-4=0\\ &\textrm{d}.\quad \color{red}x^{2}+y^{2}+4x+2y+4=0\\ &\textrm{e}.\quad x^{2}+y^{2}+4x+2y-4=0\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa}:\: \: L_{3}=L_{1}+p(L_{1}-L_{2})=0\\ &\textrm{dengan}\\ &\bullet \: L_{1}=(x+1)^{2}+(y+2)^{2}=1\\ &\qquad \Leftrightarrow x^{2}+y^{2}+2x+4y+4=0\\ &\bullet \: L_{2}=x^{2}+y^{2}+3x+3y+4=0\\ &\textrm{Untuk}\: \: L_{1}-L_{2}=-x+y=0\Leftrightarrow y=x\\ &\color{blue}\textrm{Dengan cara coba-coba, maka}\\ &\begin{aligned}L_{3}&=L_{1}+p(L_{1}-L_{2})=0\\ &=x^{2}+y^{2}+2x+4y+4+p(-x+y)=0\\ &\color{blue}\textrm{Untuk}\: \: p=1\\ &\Leftrightarrow x^{2}+y^{2}+2x+4y+4+(-x+y)=0\\ &\Leftrightarrow x^{2}+y^{2}+x+5y+4=0\\ &\color{blue}\textrm{Untuk}\: \: p=-1\\ &\Leftrightarrow x^{2}+y^{2}+2x+4y+4-(-x+y)=0\\ &\Leftrightarrow x^{2}+y^{2}+3x+3y+4=0\\ &\color{blue}\textrm{Dan untuk}\: \: p=-2\\ &\Leftrightarrow x^{2}+y^{2}+2x+4y+4-2(-x+y)=0\\ &\Leftrightarrow \color{red}x^{2}+y^{2}+4x+2y+4=0 \end{aligned} \end{aligned}\\ &\textbf{Berikut ilustrasi gambarnyanya}  \end{array}$



DAFTAR PUSTAKA
  1. Kartini, Suprapto, Subandi, dan Setiadi, U. 2005. Matematika Program Studi Ilmu Alam Kelas XI untuk SMA dan MA. Klaten: INTAN PARIWARA.
  2. Kanginan M., Nurdiansyah, H., Akhmad, G. 2016. Matematika untuk Siswa SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Bandung: YRAMA WIDYA.
  3. Noormandiri. 2017. Matematika Jilid 2 untuk SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA
  4. Sembiring, S., Zulkifli, M., Marsito, Rusdi, I. 2017. Matematika untuk Siswa SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Bandung: SEWU
  5. Sukino. 2017. Matematika Jilid 2 untuk Kelas SMA/MA Kelas XI Kelompok Peminatan dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA.

Contoh 7 Soal dan Pembahasan Materi Hubungan Dua Lingkaran

$\begin{array}{ll}\\ 31.&\textrm{Persamaan lingkaran yang melalui titik}\\ &(0,0)\: \: \textrm{dan titik potong kedua lingkaran}\\ &x^{2}+y^{2}-6x-8y-11=0\: \: \textrm{dan}\\ &x^{2}+y^{2}-4x-6y-22=0\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad x^{2}+y^{2}-12x+10y=0\\ &\textrm{b}.\quad x^{2}+y^{2}+8x-10y=0\\ &\textrm{c}.\quad x^{2}+y^{2}-8x+12y=0\\ &\textrm{d}.\quad \color{red}x^{2}+y^{2}-8x-10y=0\\ &\textrm{e}.\quad x^{2}+y^{2}+12x-8y=0\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa}:\: \: L_{3}=L_{1}+p(L_{1}-L_{2})=0\\ &\textrm{dengan}\\ &\bullet \: L_{1}=x^{2}+y^{2}-6x-8y-11=0\\ &\bullet \: L_{2}=x^{2}+y^{2}-4x-6y-22=0\\ &\textrm{Untuk}\: \: L_{1}-L_{2}=-2x-2y+11=0\\ &\textrm{Karena}\: \: L_{3}\: \: \textrm{melalui}\: \: (0,0), \: \textrm{maka}\\ &\begin{aligned}L_{3}&=L_{1}+p(L_{1}-L_{2})=0\\ &=x^{2}+y^{2}-6x-8y-11 +p(-2x-2y+11)=0\\ &\Leftrightarrow 0^{2}+0^{2}-0-0-11+p(0+11)=0\\ &\Leftrightarrow p=\color{blue}1 \end{aligned}\\ &\textrm{Sehingga}\\ &L_{3}=x^{2}+y^{2}-6x-8y-11+(-2x-2y+11)=0\\ &\Leftrightarrow L_{3}=\color{red}x^{2}+y^{2}-8x-10y=0  \end{aligned}  \end{array}$.

Berikut ilustrasi gambarnya

$\begin{array}{ll}\\ 32.&\textrm{Persamaan lingkaran yang melalui titik}\\ & (8,4)\: \: \textrm{dan titik potong lingkaran}\: x^{2}+y^{2}=16\\ &\textrm{dan}\: \: x^{2}+y^{2}-4x-4y=0\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad x^{2}+y^{2}-8x-8y-16=0\\ &\textrm{b}.\quad x^{2}+y^{2}-8x+8y+16=0\\ &\textrm{c}.\quad \color{red}x^{2}+y^{2}-8x-8y+16=0\\ &\textrm{d}.\quad x^{2}+y^{2}+8x+8y-16=0\\ &\textrm{e}.\quad x^{2}+y^{2}+8x+8y+16=0\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa}:\: \: L_{3}=L_{1}+p(L_{1}-L_{2})=0\\ &\textrm{dengan}\\ &\bullet \: L_{1}=x^{2}+y^{2}-16=0\\ &\bullet \: L_{2}=x^{2}+y^{2}-4x-4y=0\\ &\textrm{Untuk}\: \: L_{1}-L_{2}=4x+4y-16=0\\ &\Leftrightarrow x+y=4\\ &\textrm{Karena}\: \: L_{3}\: \: \textrm{melalui}\: \: (8,4), \: \textrm{maka}\\ &\begin{aligned}L_{3}&=L_{1}+p(L_{1}-L_{2})=0\\ &=x^{2}+y^{2}-16+p(x+y-4)=0\\ &\Leftrightarrow 8^{2}+4^{2}-16+p(8+4-4)=0\\ &\Leftrightarrow -8p=\color{blue}64\color{black}\Leftrightarrow p=\color{blue}-8 \end{aligned}\\ &\textrm{Sehingga}\\ &L_{3}=x^{2}+y^{2}-16-8(x+y-4)=0\\ &\Leftrightarrow L_{3}=\color{red}x^{2}+y^{2}-8x-8y+16=0  \end{aligned}\\ &\textbf{Berikut ilustrasi gambarnyanya}  \end{array}$.

$\begin{array}{ll}\\ 33.&\textrm{Persamaan lingkaran yang melalui titik}\\ & (7,-4)\: \: \textrm{dan titik potong kedua lingkaran}\\ &x^{2}+y^{2}-6x+8y-27=0\: \: \textrm{dan}\\ &x^{2}+y^{2}-26x+4y+121=0\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad x^{2}+y^{2}-36x-2y+121=0\\ &\textrm{b}.\quad x^{2}+y^{2}+24x-4y-222=0\\ &\textrm{c}.\quad 3x^{2}+3y^{2}-18x+2y-121=0\\ &\textrm{d}.\quad \color{red}x^{2}+y^{2}-36x+2y+195=0\\ &\textrm{e}.\quad x^{2}+y^{2}+24x+2y+195=0\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa}:\: \: L_{3}=L_{1}+p(L_{1}-L_{2})=0\\ &\textrm{dengan}\\ &\bullet \: L_{1}=x^{2}+y^{2}-6x+8y-27=0\\ &\bullet \: L_{2}=x^{2}+y^{2}-26x+4y+121=0\\ &\textrm{Untuk}\: \: L_{1}-L_{2}=20x+4y-148=0\\ &\textrm{Karena}\: \: L_{3}\: \: \textrm{melalui}\: \: (7,-4), \: \textrm{maka}\\ &\begin{aligned}L_{3}&=L_{1}+p(L_{1}-L_{2})=0\\ &=x^{2}+y^{2}-6x+8y-27\\ &\qquad+p(20x+4y-148)=0\\ &\Leftrightarrow 7^{2}+(-4)^{2}-42-32-27\\ &\qquad+p(140-16-148)=0\\ &\Leftrightarrow -24p=\color{blue}36\color{black}\Leftrightarrow p=\color{blue}-\displaystyle \frac{3}{2} \end{aligned}\\ &\textrm{Sehingga}\\ &L_{3}=x^{2}+y^{2}-6x+8y-27\\ &\qquad-\displaystyle \frac{3}{2}(20x+4y-148)=0\\ &\Leftrightarrow L_{3}=\color{red}x^{2}+y^{2}-36x+2y+195=0  \end{aligned}  \end{array}$.

Berikut ilustrasi gambarnya

Jika dimensi gambar diperkecil menjadi

$\begin{array}{ll}\\ 34.&\textrm{Persamaan lingkaran yang melalui perpotongan}\\&\textrm{lingkaran}\: \: x^{2}+y^{2}-12x+6y+20=0\: \: \textrm{dan}\\ &x^{2}+y^{2}-16x-14y+64=0\: \: \textrm{serta pusatnya}\\ &\textrm{terletak pada garis}\: \: 8x-3y-19=0\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad \color{red}x^{2}+y^{2}-20x-34y+108=0\\ &\textrm{b}.\quad x^{2}+y^{2}-16x+12y+96=0\\ &\textrm{c}.\quad x^{2}+y^{2}-12x+20y+88=0\\ &\textrm{d}.\quad x^{2}+y^{2}+16x-24y+108=0\\ &\textrm{e}.\quad x^{2}+y^{2}+22x-34y+96=0\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa persamaan lingkaran}:\\ &\bullet \: L_{1}=x^{2}+y^{2}-12x+6y+20=0\\ &\bullet \: L_{2}=x^{2}+y^{2}-16x-14y+64=0\\ &\textrm{Persamaan tali busurnya (garis kuasa)}\\ &\textrm{adalah}:\\ &L_{1}(x,y)-L_{2}(x,y)\\ &=4x+20y-44=0\Leftrightarrow \color{blue}x=11-5y\\ &\textrm{Selanjutnya dengan substitusi }\\ &\begin{aligned}&x^{2}+y^{2}-12x+6y+20=0\\ &\Leftrightarrow (x-6)^{2}+(y+3)^{2}=25\\ &\Leftrightarrow (\color{blue}11-5y\color{black}-6)^{2}+(y+3)^{2}=25\\ &\Leftrightarrow (y-5y)^{2}+(y+3)^{2}=25\\ &\Leftrightarrow 26y^2-44y+9=0 \end{aligned}\\ &\textrm{Sehingga dengan}\: \: \color{red}\textrm{memodifikasi}\\ &\begin{aligned}&26y^2-44y+9=0\\ &\Leftrightarrow 25y^2-44y+y^2+9=0\\ &\quad\textrm{arahkan ke bentuk kuadrat sempurna}\\ &\Leftrightarrow 25y^2-10y+1+y^2-34y+8=0\\ &\Leftrightarrow 25y^2-10y+1+y^2-34y+17^{2}-17^{2}+8=0\\ &\Leftrightarrow (5y-1)^{2}+(y-17)^{2}-281=0\\ &\quad \textrm{ingat bahwa ada tali busur}\: \: \color{blue}5y=11-x\\ &\Leftrightarrow (\color{blue}11-x\color{black}-1)^{2}+(y-17)^{2}-281=0\\ &\Leftrightarrow (10-x)^{2}+(y-17)^{2}-281=0\\ &\Leftrightarrow x^{2}-20x+100+y^{2}-34y+289-281=0\\ &\Leftrightarrow \color{red}x^{2}+y^{2}-20x-34y+108=0 \end{aligned}  \end{aligned}\\ &\textbf{Berikut ilustrasi gambarnya} \end{array}$





$\begin{array}{ll}\\ 35.&\textrm{Persamaan lingkaran dengan titik pusat}\\ &\textrm{pada garis}\: \: x+2y-3=0\: \: \textrm{dan melalui}\\ &\textrm{titik potong dua lingkaran}\\ &x^{2}+y^{2}-2x-4y+1=0\: \: \textrm{dan}\\ &x^{2}+y^{2}-4x-2y+4=0\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad \color{red}x^{2}+y^{2}-6x+7=0\\ &\textrm{b}.\quad x^{2}+y^{2}-3y+4=0\\ &\textrm{c}.\quad x^{2}+y^{2}-2x-2y+1=0\\ &\textrm{d}.\quad x^{2}+y^{2}-2x-4y+4=0\\ &\textrm{e}.\quad x^{2}+y^{2}-3x-2y+7=0\\\\ &\textbf{Jawab}:\\ &\color{blue}\textbf{Alternatif 1}\\ &\textrm{Gunakan cara pembahasan sebagaimana pada}\\ &\textrm{nomor-nomor sebelumnya}\\ &\color{blue}\textbf{Alternatif 2}\\  &\begin{aligned}&\textrm{Diketahui}\\ &L_{1}\equiv x^{2}+y^{2}-2x-4y+1=0,\: \: \textrm{dan}\\ &L_{2}\equiv x^{2}+y^{2}-4x-2y+4=0\\ &\textrm{Persamaan}\: \: \color{red}\textrm{tali busur}\: \color{black}\textrm{dari kedua}\\ &\textrm{lingkaran tersebut adalah}:\\ &\color{blue}L_{1}(x,y)- L_{2}(x,y)=0\\ &\Leftrightarrow x^{2}+y^{2}-2x-4y+1\\ &-(x^{2}+y^{2}-4x-2y+4)=0\\ &\Leftrightarrow 2x-2y-3=0\\ &\textrm{Selanjutnya perlu ditentukan juga}\\&\textrm{Persamaan}\: \: \color{red}\textrm{berkas lingkaran}\: \color{black}\textrm{melalui}\\ &\textrm{titik-titik potong kedua lingkaran}\\ &\textrm{di atas adalah}:\\ &L_{1}+\lambda L_{2}=0\\ &x^{2}+y^{2}-2x-4y+1\\ &\qquad+\lambda \left ( x^{2}+y^{2}-4x-2y+4 \right )=0\\ &\Leftrightarrow (1+\lambda )x^{2}+(1+\lambda )y^{2}-(2+4\lambda )x\\ &\qquad -(4+2\lambda )y+1+4\lambda =0\\ &\textrm{Saat}\: \: \lambda =-1,\: \textrm{maka persamaan berkas}\\ &\textrm{lingkarannya adalah}:\: 2x-2y-3=0\\ &\textrm{Hal ini hasilnya sama persis saat kita}\\ &\textrm{menentukan persamaan}\: \color{red}\textrm{tali busur}\: \color{black}\textrm{di atas}\\ &\textrm{Selanjutnya kita ambil}\\ &L_{2}-(L_{1}+\lambda L_{2})=0\\ &\Leftrightarrow  x^{2}+y^{2}-4x-2y+4-(2x-2y-3)=0\\ &\Leftrightarrow  \color{red}x^{2}+y^{2}-6x+7=0 \end{aligned}  \end{array}$.

Gambar mula-mula

Lingkaran baru yang berpusat di (3,0) 


Lanjutan Materi Fungsi Trigonometri dan Grafiknya

F. 2 Garfik Fungsi Trigonometri

F. 2. 1 Grafik Fungsi Sinus


$\color{blue}\begin{array}{|c|c|c|c|c|c|c|c|c|c| }\hline \color{magenta}x&0&\frac{\pi }{6}&\frac{\pi }{4}&\frac{\pi }{3}&\frac{\pi }{2}&\frac{2\pi }{3}&\frac{3\pi }{4}&\frac{5\pi }{6}&\pi \\\hline \color{red}f(x)&0&\frac{1}{2}&\frac{1}{2}\sqrt{2}&\frac{1}{2}\sqrt{3}&1&\frac{1}{2}\sqrt{3}&\frac{1}{2}\sqrt{2}&\frac{1}{2}&0\\\hline \color{magenta}x&\frac{7\pi }{6}&\frac{5\pi }{4}&\frac{4\pi }{3}&\frac{3\pi }{2}&\frac{5\pi }{3}&\frac{7\pi }{4}&\frac{11\pi }{6}&2\pi & \\\hline \color{red}f(x)&-\frac{1}{2}&-\frac{1}{2}\sqrt{2}&-\frac{1}{2}\sqrt{3}&-1&-\frac{1}{2}\sqrt{3}&-\frac{1}{2}\sqrt{2}&-\frac{1}{2}&0&\\\hline \end{array}$.

F. 2. 2 Grafik Fungsi Cosinus

$\color{blue}\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}\hline \color{black}x&0&\frac{\pi }{6}&\frac{\pi }{4}&\frac{\pi }{3}&\frac{\pi }{2}&\frac{2\pi }{3}&\frac{3\pi }{4}&\frac{5\pi }{6}&\pi \\\hline \color{red}f(x)&1&\frac{1}{2}\sqrt{3}&\frac{1}{2}\sqrt{2}&\frac{1}{2}&0&-\frac{1}{2}&-\frac{1}{2}\sqrt{2}&-\frac{1}{2}\sqrt{3}&-1\\\hline \color{black}x&\frac{7\pi }{6}&\frac{5\pi }{4}&\frac{4\pi }{3}&\frac{3\pi }{2}&\frac{5\pi }{3}&\frac{7\pi }{4}&\frac{11\pi }{6}&2\pi&\\\hline \color{red}f(x)&-\frac{1}{2}\sqrt{3}&-\frac{1}{2}\sqrt{2}&-\frac{1}{2}&0&\frac{1}{2}&\frac{1}{2}\sqrt{2}&\frac{1}{2}\sqrt{3}&1&\\\hline \end{array}$.

F. 2. 3 Grafik Fungsi Tangen

$\color{blue}\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}\hline \color{black}x&0&\frac{\pi }{6}&\frac{\pi }{4}&\frac{\pi }{3}&\frac{\pi }{2}&\frac{2\pi }{3}&\frac{3\pi }{4}&\frac{5\pi }{6}&\pi \\\hline \color{red}f(x)&0&\frac{1}{3}\sqrt{3}&1&\sqrt{3}&\infty &-\sqrt{3}&-1&-\frac{1}{3}\sqrt{3}&0\\\hline \color{black}x&\frac{7\pi }{6}&\frac{5\pi }{4}&\frac{4\pi }{3}&\frac{3\pi }{2}&\frac{5\pi }{3}&\frac{7\pi }{4}&\frac{11\pi }{6}&2\pi&\\\hline \color{red}f(x)&\frac{1}{3}\sqrt{3}&1&\sqrt{3}&\infty &-\sqrt{3}&-1&-\frac{1}{3}\sqrt{3}&0&\\\hline \end{array}$.

Pada fungsi Tangen demikian juga nanti Cotangennya ada beberapa nilai fungsinya yang tidak terdefinisi. Dalam fungsi Tangen fungsi, nilai fungsi yang tidak terdefini terdapat pada saat nilai  $x=\displaystyle \frac{\pi }{2}=90^{\circ}$ dan $x=\displaystyle \frac{3\pi }{2}=270^{\circ}$. Sehingga pada saat posisi nilai itu, maka dibuatlah garis bantu berupa garis putus-putus pada grafik yang dan ditampakkan berupa garis vertikal yang selanjutnya garis vertikal itu disebut sebagai asimtot.

F. 2. 4 Menggambar Grafik Fungsi Trigonometri

$\begin{aligned}&\textrm{untuk bentuk}\\ &f(x)=\begin{cases} y &=a\sin bx+c \\  y &=a\cos bx+c \\  y & =a\tan bx+c  \end{cases}\\ &\begin{array}{|c|l|l|}\hline 1.&a&\textrm{Amplitudo}\\\hline 2.&b&\textrm{Periode}\\\hline 3.&c&\textrm{Geseran}\\\hline \end{array}  \end{aligned}$.

$\LARGE\colorbox{yellow}{ CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Gambarlah grafik fungsi berikut} \\ &\textrm{jika}\: \: 0^{\circ}\leq x\leq 360^{\circ}\\ &\textrm{a}.\quad f(x)=-2\sin x\\ &\textrm{b}.\quad f(x)=3\cos x\\ &\textrm{c}.\quad f(x)=\displaystyle \frac{1}{2}\sin x\\ &\textrm{d}.\quad f(x)=4\cos x\\ &\textrm{e}.\quad f(x)=2\tan x\\\\&\color{blue}\textrm{Jawab}:\\&\begin{aligned}&  \end{aligned} \end{array}$.


$.\: \qquad\begin{aligned}&\color{blue}\textrm{No.1 a}\\ &y=f(x)=-2\sin x=a\sin bx+c\\ &\begin{array}{|c|l|l|l|}\hline 1.&a&\textrm{Amplitudo}&\left |-2  \right |=2\\\hline 2.&b&\textrm{Periode}&\displaystyle \frac{2\pi }{b}=2\pi \Leftrightarrow b=1\\\hline 3.&c&\textrm{Geseran}&0\\\hline \end{array}  \end{aligned}$.

$.\: \qquad\begin{aligned}&\color{blue}\textrm{No.1 b}\\ &y=f(x)=3\cos x=a\cos bx+c\\ &\begin{array}{|c|l|l|l|}\hline 1.&a&\textrm{Amplitudo}&\left |3  \right |=3\\\hline 2.&b&\textrm{Periode}&\displaystyle \frac{2\pi }{b}=2\pi \Leftrightarrow b=1\\\hline 3.&c&\textrm{Geseran}&0\\\hline \end{array}  \end{aligned}$.

$.\: \qquad\begin{aligned}&\color{blue}\textrm{No.1 c}\\ &y=f(x)=\displaystyle \frac{1}{2}\sin x=a\sin bx+c\\ &\begin{array}{|c|l|l|l|}\hline 1.&a&\textrm{Amplitudo}&\left |\displaystyle \frac{1}{2}  \right |=\displaystyle \frac{1}{2}\\\hline 2.&b&\textrm{Periode}&\displaystyle \frac{2\pi }{b}=2\pi \Leftrightarrow b=1\\\hline 3.&c&\textrm{Geseran}&0\\\hline \end{array}  \end{aligned}$.
$.\: \qquad\begin{aligned}&\color{blue}\textrm{No.1 d}\\ &y=f(x)=\displaystyle 4\cos x=a\cos bx+c\\ &\begin{array}{|c|l|l|l|}\hline 1.&a&\textrm{Amplitudo}&\left |\displaystyle 4  \right |=\displaystyle 4\\\hline 2.&b&\textrm{Periode}&\displaystyle \frac{2\pi }{b}=2\pi \Leftrightarrow b=1\\\hline 3.&c&\textrm{Geseran}&0\\\hline \end{array}  \end{aligned}$.
$.\: \qquad\begin{aligned}&\color{blue}\textrm{No.1 e}\\ &y=f(x)=\displaystyle 2\tan x=a\tan bx+c\\ &\begin{array}{|c|l|l|l|}\hline 1.&a&\textrm{Amplitudo}&\left |\displaystyle 2  \right |=\displaystyle 2\\\hline 2.&b&\textrm{Periode}&\displaystyle \frac{2\pi }{b}=2\pi \Leftrightarrow b=1\\\hline 3.&c&\textrm{Geseran}&0\\\hline \end{array}  \end{aligned}$.

$\begin{array}{ll}\\ 2.&\textrm{Gambarlah grafik fungsi berikut} \\ &\textrm{jika}\: \: 0^{\circ}\leq x\leq 360^{\circ}\\ &\textrm{a}.\quad f(x)=\left |-2\sin x  \right |\\ &\textrm{b}.\quad f(x)=\left |3\cos x  \right |\\ &\textrm{c}.\quad f(x)=\left |\displaystyle \frac{1}{2}\sin x  \right |\\ &\textrm{d}.\quad f(x)=\left |4\cos x  \right |\\ &\textrm{e}.\quad f(x)=\left |2\tan x  \right |\\\\&\color{blue}\textrm{Jawab}:\\&\begin{aligned}&  \end{aligned} \end{array}$.

$.\: \qquad\begin{aligned}&\color{blue}\textrm{No.2 a}\\ &y=f(x)=\left |-\displaystyle 2\sin x  \right |=\left |a\sin bx+c  \right |\\ &\begin{array}{|c|l|l|l|}\hline 1.&a&\textrm{Amplitudo}&\left |\displaystyle 2  \right |=\displaystyle 2\\\hline 2.&b&\textrm{Periode}&\pi \Leftrightarrow b=1\\\hline 3.&c&\textrm{Geseran}&0\\\hline \end{array}  \end{aligned}$.
$.\: \qquad\begin{aligned}&\color{blue}\textrm{No.2 b}\\ &y=f(x)=\left |\displaystyle 3\cos x  \right |=\left |a\cos bx+c  \right |\\ &\begin{array}{|c|l|l|l|}\hline 1.&a&\textrm{Amplitudo}&\left |\displaystyle 3  \right |=\displaystyle 3\\\hline 2.&b&\textrm{Periode}&\pi \Leftrightarrow b=1\\\hline 3.&c&\textrm{Geseran}&0\\\hline \end{array}  \end{aligned}$.

$\LARGE\colorbox{yellow}{LATIHAN SOAL}$.
Silahkan selesaikan soal yg belum dibahas

DAFTAR PUSTAKA
  1. Yuana, R.A., Indriyastuti. 2017. Perspektif Matematika untuk Kelas X SMA dan MA Kelompok Mata Pelajaran Wajib. Solo: TIGA SERANGKAI PUSTAKA MANDIRI.





















Fungsi Trigonometri dan Grafiknya

F. Fungsi Trigonometri dan Grafiknya

F. 1 Fungsi Trigonometri

Perhatikan ilustrasi berikut ini

Dengan
$\begin{array}{c|c}\\ \begin{aligned}&\textrm{Dalil/rumus Pythagoras}\\ &a^{2}+b^{2} =c^{2}\\ &\color{red}\textrm{atau}\\ &c=\sqrt{a^{2}+b^{2}} \end{aligned}&\begin{aligned}&\sin \angle ACB=\displaystyle \frac{a}{c}\\ &\cos \angle ACB=\displaystyle \frac{b}{c}\\ &\tan \angle ACB=\displaystyle \frac{a}{b}=\displaystyle \frac{\sin \angle ACB}{\cos \angle ACB} \end{aligned} \end{array}$.
Adapun gambar dari fungsi atau pemetaan trigonometrinya dari setiap sudut $\alpha $ ke salah satu nilai dari $\sin \alpha$ , $\cos \alpha$, maupun $\tan \alpha$  dalam wilayah bilangan real adalah  sebagaimana ilustrasi berikut:



$\begin{aligned}&\textrm{Misalkan}\: \: A\: \: \textrm{dan}\: \: B\: \: \textrm{dua himpunan}\\ &\textrm{Suatu relasi}\: \: F\subseteq A\times B\: \: \textrm{disebut fungsi jika}\\ &\textrm{setiap}\: a\in A,\: \textrm{maka hanya ada tepat satu}\: \: b\in B\\ &\textrm{dengan}\: \: (a,b)\in F.\\ &\textrm{Fungsi}\: \: F\: \: \textrm{disebut dengan fungsi dari}\: \: A\: \: \textrm{ke}\: \: B\\ &\textrm{Selanjutnya}\: \: A\: \: \textrm{dinamakan}\: \: \textbf{Domain}\: \: \textrm{atau}\\ &\textrm{daerah asal atau juga daerah definisi fungsi}\\ &\textrm{dan}\: \: B\: \: \textrm{disebut}\: \: \textbf{Kodomain}\\ &\textrm{Himpunan}\: \: \left \{ b\in B|(a,b)\in F \right \}\: \textrm{selanjutnya disebut}\\ &\textrm{sebagai}\: \: \textbf{nilai fungsi}\\ &\textrm{Jika}\: \: (a,b)\in F,\: \: \textrm{maka dapat tuliskan dengan}\\ &b=F(a),\: \: \textrm{yaitu nilai fungsi}\: \: F\: \: \textrm{di titik}\: \: a\\\\ &\textrm{Perhatikan tabel berikut}\\ &\begin{array}{|c|l|c|}\hline \textrm{No}&\: \: \quad\color{red}\textrm{Gambar}&\color{red}\textrm{Fungsi}\: \left ( f:\mathbb{R}\Rightarrow \mathbb{R} \right )\\\hline 1&\textrm{Fungsi Sinus}&\begin{aligned}&f:\alpha \Rightarrow \sin \alpha  \end{aligned}\\\hline 2&\textrm{Fungsi Cosinus}&\begin{aligned}&f:\alpha \Rightarrow \cos \alpha  \end{aligned}\\\hline 3&\textrm{Fungsi Tangen}&\begin{aligned}&f:\alpha \Rightarrow \tan \alpha  \end{aligned}\\\hline \end{array}  \end{aligned}$.

$\begin{aligned}&\textrm{Jangan lupa, sebagai pengingat kita untuk}\\ &\textrm{nilai sudut istimewanya adalah sebagai berikut}:\\ &\begin{array}{|c|c|c|c|c|c|c|}\hline \alpha &0^{\circ}&30&45^{\circ}&60^{\circ}&90^{\circ}&180^{\circ}\\\hline \sin \alpha &0&\displaystyle \frac{1}{2}&\displaystyle \frac{1}{2}\sqrt{2}&\displaystyle \frac{1}{2}\sqrt{3}&1&0\\\hline \cos \alpha &1&\displaystyle \frac{1}{2}\sqrt{3}&\displaystyle \frac{1}{2}\sqrt{2}&\displaystyle \frac{1}{2}&0&-1\\\hline \tan \alpha &0&\displaystyle \frac{1}{3}\sqrt{3}&1&\sqrt{3}&\color{red}\textrm{TD}&0\\\hline \end{array} \end{aligned}$.

$\LARGE\colorbox{yellow}{ CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Jika diketahui}\: \: f(x)=\sin 2x,\: \: \textrm{tentukan nilai}\\ &\textrm{a}.\quad f(60^{\circ})\\ &\textrm{b}.\quad f\left ( \displaystyle \frac{1}{3}\pi  \right )\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&f(60^{\circ})=\sin 2\left ( 60^{\circ} \right )=\sin 120^{\circ}\\ &\: \: \: \qquad =\sin \left ( 180^{\circ}-60^{\circ} \right )=\sin 60^{\circ}=\displaystyle \frac{1}{2}\sqrt{3}\\ \textrm{b}.\quad&f\left ( \displaystyle \frac{1}{3}\pi  \right )=\sin 2\left ( \displaystyle \frac{1}{3}\pi  \right )=\sin \left ( \displaystyle \frac{2}{3}\pi  \right )\\ &\: \: \qquad\quad =\sin \left ( \displaystyle \frac{2}{3}(180^{\circ}) \right )=\sin 120^{\circ}=\displaystyle \frac{1}{2}\sqrt{3} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Jika diketahui}\: \: f(x)=\sin x,\: \: \textrm{tentukan harga}\\ &x\: \: \textrm{jika diketahui}\: (\: x\: \: \textrm{sudut lancip})\\ &\textrm{a}.\quad f(x)=\displaystyle \frac{1}{2}\\ &\textrm{b}.\quad f(x)=\displaystyle \frac{1}{4}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&f(x)=\displaystyle \frac{1}{2}=\sin x\Rightarrow x=30^{\circ}\\ \textrm{b}.\quad&f(x)=\displaystyle \frac{1}{4}=\sin x\Rightarrow x=\color{red}\sin ^{-1}\left ( \displaystyle \frac{1}{4} \right )\\ &\textrm{hal ini dikarenakan}\: \: \displaystyle \frac{1}{4}\: \: \textrm{bukanlah}\\ &\textrm{nilai dari salah satu sudut istimewa}\\ &\textrm{untuk fungsi}\: \: \textbf{sinus} \end{aligned} \end{array}$.

$\LARGE\colorbox{yellow}{LATIHAN SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Jika diketahui}\: \: f(x)=\cos 2x,\: \: \textrm{tentukan nilai}\\  &\textrm{a}.\quad f(60^{\circ})\\ &\textrm{b}.\quad f\left ( \displaystyle \frac{1}{3}\pi  \right )\end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Jika diketahui}\: \: f(x)=\tan x,\: \: \textrm{tentukan nilai}\\  &\textrm{a}.\quad f(60^{\circ})\\ &\textrm{b}.\quad f\left ( \displaystyle \frac{1}{3}\pi  \right )\end{array}$.

$\begin{array}{ll}\\ 3.&\textrm{Jika diketahui}\: \: f(x)=\cos x,\: \: \textrm{tentukan harga}\\ &x\: \: \textrm{jika diketahui}\: (\: x\: \: \textrm{sudut lancip})\\ &\textrm{a}.\quad f(x)=\displaystyle \frac{1}{2}\\ &\textrm{b}.\quad f(x)=\displaystyle \frac{1}{4} \end{array}$.

$\begin{array}{ll}\\ 4.&\textrm{Jika diketahui}\: \: f(x)=\tan x,\: \: \textrm{tentukan harga}\\ &x\: \: \textrm{jika diketahui}\: (\: x\: \: \textrm{sudut lancip})\\ &\textrm{a}.\quad f(x)=\displaystyle \frac{1}{3}\sqrt{3}\\ &\textrm{b}.\quad f(x)=\displaystyle \frac{1}{6}\sqrt{3} \end{array}$

DAFTAR PUSTAKA
  1. Budhi, W.S. 2014. Bupena Matematika SMA/MA Kelas X Kelompok Wajib. Jakarta: ERLANGGA.
  2. Yuana, R.A., Indriyastuti. 2017. Perspektif Matematika untuk Kelas X SMA dan MA Kelompok Mata Pelajaran Wajib. Solo: TIGA SERANGKAI PUSTAKA MANDIRI.





Lanjutan Identitas Trigonometri

 $\begin{aligned}&\textrm{E. 3 Menentukan Nilai Perbandingan Trigonometri}\\ &\quad\textrm{pada Segitiga Siku-Siku} \end{aligned}$.

$\LARGE\colorbox{yellow}{ CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Diketahui}\: \: \tan \theta =\displaystyle \frac{a}{x} \\ &\textrm{Tentukanlah nilai}\: \: \displaystyle \frac{x}{\sqrt{a^{2}+x^{2}}}\\\\ &\color{blue}\textrm{Jawab}:\\ &\textrm{Perhatikanlah gambar segitiga AOX berikut} \end{array}$

$.\: \qquad\begin{aligned}&\textrm{Dengan rumus Pythagoras dapatr ditentukan}\\ &\textrm{panjang ruas}\: \: \textrm{AX, yaitu}:\\ &AO^{2}+OX^{2} =AX^{2}\\ &\textrm{atau}\\ &AX^{2}=AO^{2}+OX^{2} \\ &AX=\sqrt{AO^{2}+OX^{2}}\\ &\qquad =\sqrt{x^{2}+a^{2}},\\ &\textrm{maka}\\ &\bullet \quad \sin \theta =\displaystyle \frac{a}{\sqrt{x^{2}+a^{2}}}\\ &\bullet \quad \cos \theta =\displaystyle \frac{x}{\sqrt{x^{2}+a^{2}}} \\ &\textrm{Jadi, nilai}\: \: \displaystyle \frac{x}{\sqrt{x^{2}+a^{2}}}=\color{red}\cos \theta \end{aligned}$.

$\begin{array}{ll}\\ 2.&\textrm{Jika}\: \: \sin \beta +\cos \beta =\displaystyle \frac{6}{5},\: \textrm{tentukanlah}\\ &\textrm{a}.\quad \sin \beta \cos \beta \\ &\textrm{b}.\quad \sin ^{3}\beta +\cos ^{3}\beta \\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\sin \beta +\cos \beta=\displaystyle \frac{6}{5}\\ &\color{red}\textrm{saat masing-masing ruas dikuadratkan,}\\ &\textrm{maka}\\ &\left (\sin \beta +\cos \beta \right )^{2}=\left (\displaystyle \frac{6}{5} \right )^{2}\\ &\sin ^{2}\beta +2\sin \beta \cos \beta +\cos ^{2}\beta =\displaystyle \frac{36}{25}\\ &\sin ^{2}\beta +\cos ^{2}\beta +2\sin \beta \cos \beta=\displaystyle \frac{36}{25}\\ &1+2\sin \beta \cos \beta=\displaystyle \frac{36}{25}\\ &2\sin \beta \cos \beta=\displaystyle \frac{36}{25}-1\\ &2\sin \beta \cos \beta=\displaystyle \frac{36-25}{25}=\frac{11}{25}\\ &\sin \beta \cos \beta=\color{blue}\displaystyle \frac{11}{50} \end{aligned}\\ &\begin{aligned}\textrm{b}.\quad&\sin ^{3}\beta +\cos ^{3}\beta \\ &=\left ( \sin \beta +\cos \beta \right )\left ( \sin ^{2}\beta +\cos ^{2}\beta -\sin \beta \cos \beta \right )\\ &=\left ( \sin \beta +\cos \beta \right )\left ( 1 -\sin \beta \cos \beta \right )\\ &=\left ( \displaystyle \frac{6}{5} \right ).\left ( 1-\displaystyle \frac{11}{50} \right )\\ &=\left ( \displaystyle \frac{6}{5} \right ).\left ( \displaystyle \frac{50-11}{50} \right )\\ &=\left ( \displaystyle \frac{6}{5} \right ).\left ( \displaystyle \frac{39}{50} \right )\\ &=\displaystyle \color{blue} \frac{3\times 39}{5\times 25}=\frac{117}{125} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 3.&\textrm{Jika}\: \: \tan \alpha =\displaystyle \frac{1}{\sqrt{7}},\: \textrm{tentukanlah}\\ &\left ( \displaystyle \frac{\csc ^{2}\alpha -\sec ^{2}\alpha }{\csc ^{2}\alpha +\sec ^{2}\alpha} \right ) \\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{Diket}&\textrm{ahui bahwa}:\\ \tan \alpha &=\displaystyle \frac{1}{\sqrt{7}},\: \: \color{red}\textrm{dan ingat juga bahwa}\\ \sec ^{2}\alpha &=\tan ^{2}\alpha +1=\left ( \displaystyle \frac{1}{\sqrt{7}} \right )^{2}+1=\frac{1}{7}+1=\frac{8}{7}\\ \color{red}\textrm{Demik}&\color{red}\textrm{ian juga},\: \color{black}\cot \alpha =\displaystyle \frac{1}{\tan \alpha } =\displaystyle \frac{1}{\left ( \frac{1}{\sqrt{7}} \right )}=\sqrt{7},\\ \textrm{maka},&\: \: \csc ^{2}\alpha =\cot ^{2}\alpha +1=\left ( \sqrt{7} \right )^{2}+1=7+1=8\\ \textrm{Selanj}&\textrm{utnya}\\ &\left ( \displaystyle \frac{\csc ^{2}\alpha -\sec ^{2}\alpha }{\csc ^{2}\alpha +\sec ^{2}\alpha} \right )=\left ( \displaystyle \frac{8-\displaystyle \frac{8}{7}}{8+\displaystyle \frac{8}{7}} \right )\\ &=\displaystyle \frac{\displaystyle \frac{56-8}{7}}{\displaystyle \frac{56+8}{7}} \\ &=\displaystyle \frac{48}{64}\\ &=\color{blue}\displaystyle \frac{3}{4} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 4.&\textrm{Jika}\: \: \beta\: \: \textrm{sudut lancip dan}\: \: \cos \beta =\displaystyle \frac{3}{5},\\ &\textrm{tentukan nilai dari}\: \: \displaystyle \frac{\sin \beta \tan \beta -1}{2\tan ^{2}\beta }\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{Diketahui}&\\ \cos \beta &=\displaystyle \frac{3}{5}\Rightarrow \sin ^{2}\beta +\cos ^{2}\beta =1\\ \sin ^{2}\beta &+\cos ^{2}\beta =1\\ \sin \beta &=\sqrt{1-\cos ^{2}\beta}=\sqrt{1-\left ( \displaystyle \frac{3}{5} \right )^{2}}\\ &=\sqrt{1-\displaystyle \frac{9}{25}}=\sqrt{\displaystyle \frac{16}{25}}=\displaystyle \frac{4}{5}\\ \textrm{Sehingga}\: &\tan \beta =\displaystyle \frac{\sin \beta }{\cos \beta }=\frac{\displaystyle \frac{4}{5}}{\displaystyle \frac{3}{5}}=\frac{4}{3}\\ &\color{red}\displaystyle \frac{\sin \beta \tan \beta -1}{2\tan ^{2}\beta }\color{black}=\displaystyle \frac{\displaystyle \frac{4}{5}\times \frac{4}{3}-1}{2\left ( \displaystyle \frac{4}{3} \right )^{2}}\\ &\: \, \quad\quad\quad\quad\quad\quad =\displaystyle \frac{\displaystyle \frac{16}{15}-1}{\displaystyle \frac{32}{9}}=\displaystyle \frac{\displaystyle \frac{1}{15}}{\displaystyle \frac{32}{9}}=\displaystyle \frac{9}{32\times 15}\\ &\: \, \quad\quad\quad\quad\quad\quad =\displaystyle \frac{3}{32\times 5}\\ &\: \, \quad\quad\quad\quad\quad\quad =\color{blue}\displaystyle \frac{3}{160} \end{aligned} \end{array}$

DAFTAR PUSTAKA
  1. Sukino. 2016. Matematika untuk SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA


Identitas Trigonometri

 $\Large\textrm{E  Identitas Trigonometri}$.

E. 1  Nilai Trigonometri Sudut
$\textrm{a.  Perbandingan Trigonometri dalam Segitiga Siku-Siku}$.
Perhatikanlah ilustrasi sebuah segitiga siku-siku sama kaki berikut
Diketahui pula bahwa :
$\begin{matrix} \bullet \quad \sin 45^{\circ}=\displaystyle \frac{1}{\sqrt{2}}=\frac{1}{2}\sqrt{2}\\ \bullet \quad \cos 45^{\circ}=\displaystyle \frac{1}{\sqrt{2}}=\frac{1}{2}\sqrt{2}\\ \bullet \quad \tan 45^{\circ}=1 \qquad\qquad\: \: \end{matrix}$.
$\begin{matrix} \bullet \quad \csc 45^{\circ}=\displaystyle \sqrt{2}\\ \bullet \quad \sec 45^{\circ}=\displaystyle \sqrt{2}\\ \bullet \quad \cot 45^{\circ}=1 \: \: \, \end{matrix}$.

Berikut ilustrasi segitiga dengan sudut istimewa yang lain yaitu $30^{\circ}$ dan  $60^{\circ}$.

$\begin{array}{|c|c|}\hline \begin{matrix} \bullet \quad \color{purple}\sin 30^{\circ}=\displaystyle \frac{1}{2}\\ \bullet \quad \cos 30^{\circ}=\displaystyle \frac{1}{2}\sqrt{3}\\ \bullet \quad \tan 30^{\circ}=\displaystyle \frac{1}{\sqrt{3}}=\frac{1}{3}\sqrt{3} \: \: \,\\ \bullet \quad \color{blue}\sin 60^{\circ}=\displaystyle \frac{1}{2}\sqrt{3}\\ \bullet \quad \cos 60^{\circ}=\displaystyle \frac{1}{2}\\ \bullet \quad \tan 30^{\circ}=\displaystyle \sqrt{3}\\ \end{matrix} &\begin{matrix} \bullet \quad \csc 30^{\circ}=\displaystyle 2\\ \bullet \quad \sec 30^{\circ}=\displaystyle \frac{2}{\sqrt{3}}=\frac{2}{3}\sqrt{3}\\ \bullet \quad \cot 30^{\circ}=\displaystyle \sqrt{3} \: \: \,\\ \bullet \quad \color{red}\csc 60^{\circ}=\displaystyle \frac{2}{\sqrt{3}}=\frac{2}{3}\sqrt{3}\\ \bullet \quad \sec 60^{\circ}=\displaystyle 2\\ \bullet \quad \color{purple}\cot 30^{\circ}=\displaystyle \frac{1}{3}\sqrt{3}\\ \end{matrix} \\\hline \end{array}$


Perhatikan segitiga ABC siku-siku di C berikut
Perhatikanlah segitiga OAB berikut
$\begin{aligned}\textrm{a}.\quad&\color{purple}\sin \alpha =\displaystyle \frac{y}{r}\\ \textrm{b}.\quad&\cos \alpha =\displaystyle \frac{x}{r}\\ \textrm{c}.\quad&\color{blue}\tan \alpha =\displaystyle \frac{y}{x}\\ \textrm{d}.\quad&\csc \alpha =\displaystyle \frac{r}{y}\\ \textrm{e}.\quad&\sec \alpha =\displaystyle \frac{r}{x}\\ \textrm{f}.\quad&\color{red}\cot \alpha =\displaystyle \frac{x}{y}\\ \end{aligned}$.

E. 2  Identitas Trigonometri Dasar

$\textrm{a.  Dalil Pythagoras Segitiga Siku-Siku}$.


$\begin{array}{c|c}\\ \begin{aligned}&\textrm{Dalil/rumus Pythagoras}\\ &a^{2}+b^{2} =c^{2}\\ &\color{red}\textrm{atau}\\ &c=\sqrt{a^{2}+b^{2}} \end{aligned}&\begin{aligned}&\sin \angle ACB=\displaystyle \frac{a}{c}\\ &\cos \angle ACB=\displaystyle \frac{b}{c}\\ &\tan \angle ACB=\displaystyle \frac{a}{b}=\displaystyle \frac{\sin \angle ACB}{\cos \angle ACB}\\ &\csc \angle ACB=\displaystyle \frac{c}{a}\\ &\sec \angle ACB=\displaystyle \frac{c}{b}\\ &\cot \angle ACB=\displaystyle \frac{b}{a}=\displaystyle \frac{\cos \angle ACB}{\sin \angle ACB} \end{aligned} \end{array}$

$\color{purple}\textrm{b. Identitas trigonometri pada segitiga siku-siku}$.

$\begin{aligned}&\textrm{Dalil/rumus Pythagoras}\\ &a^{2}+b^{2} =c^{2}\\ &\textrm{Perhatikan lagi gambar di poin c di atas}\\ &\begin{array}{|c|l|}\hline 1.&\textrm{Rumus saat dibagi dengan}\: \: c^{2}\\ &\displaystyle \frac{a^{2}}{c^{2}}+\displaystyle \frac{b^{2}}{c^{2}}=\displaystyle \frac{c^{2}}{c^{2}}\Leftrightarrow \color{red}\displaystyle \frac{a^{2}}{c^{2}}+\displaystyle \frac{b^{2}}{c^{2}}=1\\&\\ &\textrm{menjadi}\: \: \: \left ( \displaystyle \frac{a}{c} \right )^{2}+\left ( \displaystyle \frac{b}{c} \right )^{2}=1\\ &\color{blue}\sin ^{2}\angle ACB+\cos ^{2}\angle ACB=1\\\hline 2&\textrm{Rumus saat dibagi dengan}\: \: b^{2}\\ &\displaystyle \frac{a^{2}}{b^{2}}+\displaystyle \frac{b^{2}}{b^{2}}=\displaystyle \frac{c^{2}}{b^{2}}\Leftrightarrow \color{red}\displaystyle \frac{a^{2}}{b^{2}}+1=\displaystyle \frac{c^{2}}{b^{2}}\\&\\ &\textrm{menjadi}\: \: \: \left ( \displaystyle \frac{a}{b} \right )^{2}+1=\left ( \displaystyle \frac{c}{b} \right )^{2}\\ &\color{blue}\tan ^{2}\angle ACB+1=\sec ^{2}\angle ACB\\\hline 3&\textrm{Rumus saat dibagi dengan}\: \: a^{2}\\ &\displaystyle \frac{a^{2}}{a^{2}}+\displaystyle \frac{b^{2}}{a^{2}}=\displaystyle \frac{c^{2}}{a^{2}}\Leftrightarrow \color{red}1+\displaystyle \frac{b^{2}}{a^{2}}=\displaystyle \frac{c^{2}}{a^{2}}\\&\\ &\textrm{menjadi}\: \: \: 1+\left ( \displaystyle \frac{b}{a} \right )^{2}=\left ( \displaystyle \frac{c}{a} \right )^{2}\\ &\color{blue}1+\cot ^{2}\angle ACB=\csc ^{2}\angle ACB\\\hline \end{array} \end{aligned}$

$\color{purple}\textrm{c. Tabel trigonometri nilai sudut istimewa}$.

$\begin{array}{|c|c|c|c|c|c|c|}\hline \alpha &0^{\circ}&30&45^{\circ}&60^{\circ}&90^{\circ}&180^{\circ}\\\hline \sin \alpha &0&\displaystyle \frac{1}{2}&\displaystyle \frac{1}{2}\sqrt{2}&\displaystyle \frac{1}{2}\sqrt{3}&1&0\\\hline \cos \alpha &1&\displaystyle \frac{1}{2}\sqrt{3}&\displaystyle \frac{1}{2}\sqrt{2}&\displaystyle \frac{1}{2}&0&-1\\\hline \tan \alpha &0&\displaystyle \frac{1}{3}\sqrt{3}&1&\sqrt{3}&\color{red}\textrm{TD}&0\\\hline \end{array}$.

$\begin{aligned}&\color{blue}\textrm{d. Macam-Macam Identitas Trigonometri Dasar}\\ &1.\quad \csc \alpha =\displaystyle \frac{1}{\sin \alpha }\qquad\qquad 5.\quad \tan \alpha =\displaystyle \frac{\sin \alpha }{\cos \alpha }\\ &2.\quad \sec \alpha =\displaystyle \frac{1}{\cos \alpha }\qquad\qquad 6.\quad \tan^{2} \alpha +1=\sec ^{2}\alpha \\ &3.\quad \cot \alpha =\displaystyle \frac{1}{\tan \alpha }\qquad\qquad 7.\quad \cot^{2} \alpha +1=\csc ^{2}\alpha \\ &4.\quad \cot \alpha =\displaystyle \frac{\cos \alpha }{\sin \alpha }\qquad\qquad 8.\quad \sin^{2} \alpha +\cos ^{2}=1\\ \end{aligned}$.


$\LARGE\colorbox{yellow}{ CONTOH SOAL}$.
$\begin{array}{ll}\\ 1.&\textrm{Tunjukkan bahwa} \\ &\qquad\qquad\tan \alpha =\displaystyle \frac{\sin \alpha \cos \alpha }{1-\sin ^{2}\alpha }\\\\ &\color{blue}\textrm{Bukti}:\\ &\begin{aligned}\tan \alpha &=\displaystyle \frac{\sin \alpha }{\cos \alpha }\\ &=\displaystyle \frac{\sin \alpha }{\cos \alpha }\times \frac{\cos \alpha }{\cos \alpha }\\ &=\displaystyle \frac{\sin \alpha \cos \alpha }{\cos^{2} \alpha }\\ &=\displaystyle \frac{\sin \alpha \cos \alpha }{1-\sin^{2} \alpha }\qquad \blacksquare \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 2.&\textrm{Tunjukkan bahwa} \\ &\qquad\qquad \displaystyle \frac{1}{\sqrt{\tan ^{2}\beta }}\times \sin \beta =\cos \beta \\\\ &\color{blue}\textrm{Bukti}:\\ &\begin{aligned}\displaystyle \frac{1}{\sqrt{\tan ^{2}\beta }}\times \sin \beta &=\displaystyle \frac{1}{\tan \beta }\times \sin \beta \\ &=\displaystyle \frac{\cos \beta }{\sin \beta }\times \sin \beta \\ &=\cos \beta \qquad\blacksquare \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 3.&\textrm{Tunjukkan bahwa} \\ &\qquad\qquad \displaystyle \frac{\cos ^{2}\gamma }{1-\sin \gamma } =1+\sin \gamma \\\\ &\color{blue}\textrm{Bukti}:\\ &\begin{aligned}\displaystyle \frac{\cos ^{2}\gamma }{1-\sin \gamma } &=\displaystyle \frac{1-\sin^{2} \gamma }{1-\sin \gamma }\\ &=\displaystyle \frac{(1-\sin \gamma )(1+\sin \gamma )}{1-\sin \gamma }\\ &=1+\sin \gamma \qquad\quad \blacksquare \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 4.&\textrm{Tunjukkan bahwa} \\ &\qquad\qquad \displaystyle \frac{1-\tan ^{2}\theta }{1+\tan ^{2}\theta } =\cos ^{2}\theta -\sin ^{2}\theta \\\\ &\color{blue}\textrm{Bukti}:\\ &\begin{aligned}\displaystyle \frac{1-\tan ^{2}\theta }{1+\tan ^{2}\theta } &=\displaystyle \frac{1-\tan ^{2}\theta }{\sec ^{2}\theta }=\displaystyle \frac{1-\displaystyle \frac{\sin ^{2}\theta }{\cos ^{2}\theta }}{\displaystyle \frac{1}{\cos ^{2}\theta }}\\ &=\displaystyle \frac{\displaystyle \frac{\cos ^{2}\theta -\sin ^{2}\theta }{\cos ^{2}\theta }}{\displaystyle \frac{1}{\cos ^{2}\theta }} \\ &=\cos ^{2}\theta -\sin ^{2}\theta\qquad \blacksquare \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 5.&\textrm{Tunjukkan bahwa} \\ &\qquad\qquad \cos ^{4}\alpha -\sin ^{4}\alpha =1-2\sin ^{2}\alpha \\\\ &\color{blue}\textrm{Bukti}:\\ &\begin{aligned}\cos ^{4}\alpha -\sin ^{4}\alpha &=\left ( \cos ^{2}\alpha \right )^{2} -\left (\sin ^{2}\alpha \right )^{2}\\ &=\left (\cos ^{2}\alpha -\sin ^{2}\alpha \right )\left ( \cos ^{2}\alpha +\sin ^{2}\alpha \right )\\ &=\left (\cos ^{2}\alpha -\sin ^{2}\alpha \right )\times 1\\ &=\cos ^{2}\alpha -\sin ^{2}\alpha \\ &=\left ( 1-\sin ^{2}\alpha \right )-\sin ^{2}\alpha \\ &=1-2\sin ^{2}\alpha \qquad\quad \blacksquare \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 6.&\textrm{Tunjukkan bahwa} \\ &\qquad\qquad \displaystyle \frac{\sin \beta \sec \beta }{\sin ^{2}\beta -\tan ^{2}\beta } =-\displaystyle \frac{\cos \beta }{\sin ^{3}\beta } \\\\ &\color{blue}\textrm{Bukti}:\\ &\begin{aligned}\displaystyle \frac{\sin \beta \sec \beta }{\sin ^{2}\beta -\tan ^{2}\beta }&=\displaystyle \frac{\sin \beta \left ( \displaystyle \frac{1}{\cos \beta } \right ) }{\sin ^{2}\beta -\displaystyle \frac{\sin ^{2}\beta }{\cos ^{2}\beta } } \\ &=\displaystyle \frac{\left ( \displaystyle \frac{\sin \beta }{\cos \beta } \right )}{\sin ^{2}\beta \left ( 1-\displaystyle \frac{1}{\cos ^{2}\beta } \right )}\times \frac{\cos ^{2}\beta }{\cos ^{2}\beta }\\ &=\displaystyle \frac{\sin \beta \cos \beta }{\sin ^{2}\beta \left ( \cos ^{2}\beta -1 \right )}\\ &=\displaystyle \frac{\cos \beta }{\sin \beta \left ( -\sin ^{2}\beta \right )}\\ &=-\displaystyle \frac{\cos \beta }{\sin ^{3}\beta } \qquad\quad \blacksquare \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 7.&\textrm{Tunjukkan bahwa} \\ &\displaystyle \frac{1}{1-\displaystyle \frac{1}{1+\displaystyle \frac{1}{\tan ^{2}x}}}=\sec ^{2}x \\\\&\color{blue}\textrm{Bukti}:\\&\begin{aligned}&\displaystyle \frac{1}{1-\displaystyle \frac{1}{1+\displaystyle \frac{1}{\tan ^{2}x}}}=\displaystyle \frac{1}{1-\displaystyle \frac{1}{1+\cot ^{2}x}}\\ &=\displaystyle \frac{1}{1-\displaystyle \frac{1}{\csc ^{2}x}}=\displaystyle \frac{1}{1-\sin ^{2}x}=\displaystyle \frac{1}{\cos ^{2}x}\\ &=\sec ^{2}x\qquad \blacksquare  \end{aligned} \end{array}$.

DAFTAR PUSTAKA
  1. Noormandiri, B. K. 2016. Matematika untuk SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA.
  2. Sukino. 2016. Matematika untuk SMA/MA Kelas XI Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA.
  3. Yuana, R.A., Indriyastuti. 2017. Perspektif Matematika untuk Kelas X SMA dan MA Kelompok Mata Pelajaran Wajib. Solo: TIGA SERANGKAI PUSTAKA MANDIRI.

Contoh 6 Soal dan Pembahasan Materi Hubungan Dua Lingkaran

$\begin{array}{ll}\\ 26.&\textrm{Diketahui lingkaran-lingkaran}\\ & x^{2}+y^{2}-2x+3y+k=0\: \: \textrm{dan}\: \\  &x^{2}+y^{2}+8x-6y-7=0\: \: \textrm{saling}\\ &\textrm{berpotongan ortogonal saat}\: \: k=\: ....\\ &\textrm{a}.\quad \color{red}-10\\ &\textrm{b}.\quad -3\\ &\textrm{c}.\quad 1\\ &\textrm{d}.\quad 5\\ &\textrm{e}.\quad 8\\\\ &\textbf{Jawab}:\\ &\textrm{Perhatikan tabel berikut}\\ &\begin{array}{|l|l|l|}\hline \qquad\qquad\textrm{Lingakaran}&\qquad\textrm{Pusat/r}\\\hline L_{1}\equiv x^{2}+y^{2}-2x+3y+k=0&\begin{cases} P_{1} &=\left ( 1,-\displaystyle \frac{3}{2} \right ) \\  r_{1} & = \sqrt{\displaystyle \frac{13-4k}{4}} \end{cases}\\\hline \begin{aligned}L_{2}&\equiv x^{2}+y^{2}+8x-6y-7=0  \end{aligned}&\begin{cases} P_{2} &=\left ( -4,3 \right ) \\  r_{2} & = \sqrt{32} \end{cases}\\\hline \end{array} \\ &\textrm{Syarat dua lingkaran berpotongan ortogonal}\\ &\begin{aligned}&\left (P_{1}P_{2}  \right )^{2}=r_{1}^{2}+r_{2}^{2}\\ &\Leftrightarrow \left ( 1+4 \right )^{2}+\left ( -\displaystyle \frac{3}{2}-3 \right )^{2}=\left ( \sqrt{\displaystyle \frac{13-4k}{4}} \right )^{2}+\sqrt{32}^{2}\\ &\Leftrightarrow \: 25+\displaystyle \frac{81}{4}=\displaystyle \frac{13-4k}{4}+32\\ &\Leftrightarrow \: 100+81=13-4k+128\\ &\Leftrightarrow \: k=-10 \end{aligned} \\ &\textbf{Sebagai ilustrasi perhatikan gambar berikut}  \end{array}$.

$\begin{array}{ll}\\ 27.&\textrm{Persamaan lingkaran yang berpotongan}\\ &\textrm{lingkaran lain}\: \:  x^{2}+y^{2}+2x+y-11=0\\ &\textrm{secara tegak lurus dan melalui}\: \: (4,3)\: \: \textrm{serta}\\ &\textrm{pusatnya pada}\: \: 9x+4y=37\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad \color{red}x^{2}+y^{2}-10x+4y+3=0\\ &\textrm{b}.\quad x^{2}+y^{2}-8x+10y+6=0\\ &\textrm{c}.\quad x^{2}+y^{2}+4x-8y+7=0\\ &\textrm{d}.\quad x^{2}+y^{2}+6x+y+5=0\\ &\textrm{e}.\quad x^{2}+y^{2}+12x+6y+5=0\\\\ &\textbf{Jawab}:\\ &\textrm{Perhatikan tabel berikut}\\ &\begin{array}{|l|l|l|}\hline \qquad\qquad\textrm{Lingakaran}&\qquad\textrm{Pusat/r}\\\hline L_{1}\equiv x^{2}+y^{2}+2x+y-11=0&\begin{cases} P_{1} &=\left ( -1,-\displaystyle \frac{1}{2} \right ) \\  r_{1} & = \sqrt{\displaystyle \frac{49}{4}}=\displaystyle \frac{7}{2} \end{cases}\\\hline \begin{aligned}L_{2}&\equiv (x-a)^{2}+(y-b)^{2}=r^{2}  \end{aligned}&\begin{cases} P_{2} &=\left ( a,b \right ) \\  r_{2} & = r \end{cases}\\\hline \end{array}\\ &\textrm{Karena berpotongan tegak lurus, maka}\\ &\begin{aligned}&\left (P_{1}P_{2}  \right )^{2}=r_{1}^{2}+r_{2}^{2}\\ &\Leftrightarrow \left ( -1-a \right )^{2}+\left ( -\displaystyle \frac{1}{2}-b \right )^{2}=\displaystyle \frac{49}{4}+r^{2}\\ &\Leftrightarrow a^{2}+2a+1+b^{2}+b+\displaystyle \frac{1}{4}=\displaystyle \frac{49}{4}+r^{2}\\ &\Leftrightarrow \color{blue}a^{2}+b^{2}+2a+b+\displaystyle \frac{5}{4}=\displaystyle \frac{49}{4}+r^{2}\\ &\Leftrightarrow a^{2}+b^{2}+2a+b-11=r^{2}\: .......(1)\\ \end{aligned} \\ &\textrm{Selanjutnya}\\ &\begin{aligned}&\textrm{Lingkaran}\: \: L_{2}\: \: \textrm{melalui titik}\: \: (4,3), \textrm{artinya}\\ &\textrm{bahwa}\: :\: (4-a)^{2}+(3-b)^{2}=r^{2}\\ &\Leftrightarrow a^{2}-8a+16+b^{2}-6b+9=r^{2}\\ &\Leftrightarrow a^{2}+b^{2}-8a-6b+25=r^{2}\: .......(2)\\ &\textrm{Pusat lingkaran}\: \: L_{2}\: \: \textrm{melalui garis}\: \: 9x+4y=37\\ &\textrm{artinya}:\: 9a+4b=37\: ...............(3)\\  \end{aligned}\\ &\begin{aligned}&\textrm{Dengan eliminasi}\: 1\: \&\: 2\: \: \textrm{dapat diperoleh}:\\ &\begin{array}{rll} a^{2}+b^{2}-8a-6b+25&=r^{2}&\\ a^{2}+b^{2}+2a+b-11&=r^{2}&-\\\hline -10a-7b+36&=0&\textrm{atau}\\ 10a+7b&=36&......(4) \end{array}\\ &\textrm{Dari persamaan}\: 3\: \&\: 4\: \: \textrm{dapat diperoleh}:\\ & \end{aligned}\\ &\begin{array}{rll} 10a+7b&=36&(\times 4)\\ 9a+4b&=37&(\times 7)\\\hline 40a+28b&=144&\\ 63a+28b&=259&\\\hline -23a\: \quad\quad&=-115&\\ a&=\displaystyle \frac{-115}{-23}&=5\\ 10(5)+7b&=36&\\ 7b&=-14\\ b&=-2 \end{array}\\ &\textrm{Adapun langkah berikutnya}\\ &\begin{aligned}&L_{2}\equiv (4-a)^{2}+(3-b)^{2}=r^{2}\\ &L_{2}\equiv (4-5)^{2}+(3+2)^{2}=r^{2}\\ &L_{2}\equiv r^{2}=25+1=26\\ &\textrm{Sehingga},\: L_{2}\equiv (x-5)^{2}+(y+2)^{2}=26\\ &\Leftrightarrow x^{2}+y^{2}-10x+4y+25+4-26=0\\ &\Leftrightarrow \color{red}x^{2}+y^{2}-10x+4y+3=0 \end{aligned}\\ &\textbf{Berikut ilustrasi gambarnya} \end{array}$.


Jika diperjelas dengan tambahan garis 9x+4y=37

$\begin{array}{ll}\\ 28.&\textrm{Diketahui lingkaran pertama berpusat di}\: \:  (1,2)\\ &\textrm{dan menyinggung garis}\: \: 3x-4y+10=0.\\ &\textrm{Jika ada lingkaran kedua dengan pusat}\: \: (4,6)\\ &\textrm{dan menyinggung lingkaran yang pertama},\\ &\textrm{maka persamaan lingkaran yang kedua}\\ &\textrm{tersebut adalah}\: ....\\ &\textrm{a}.\quad x^{2}+y^{2}-8x-12y+48=0\\ &\textrm{b}.\quad x^{2}+y^{2}-8x-12y+43=0\\ &\textrm{c}.\quad \color{red}x^{2}+y^{2}-8x-12y+36=0\\ &\textrm{d}.\quad x^{2}+y^{2}-8x-12y+27=0\\ &\textrm{e}.\quad x^{2}+y^{2}-8x-12y+16=0\\\\ &\textbf{Jawab}:\\ &\textrm{Diketahui bahwa kedua lingkaran saling}\\ &\color{blue}\textrm{bersinggungan di luar},\: \color{black}\textrm{maka}\\ &\begin{aligned}r_{1}+r_{2}&=P_{1}P_{2}\\ &=\sqrt{(y_{2}-y_{1})^{2}+(x_{2}-x_{1})^{2}}\\ &=\sqrt{(1-4)^{2}+(2-6)^{2}}\\ &=\sqrt{3^{2}+4^{2}}=\sqrt{5^{2}}=5 \end{aligned}\\ &\textrm{Selanjutnya}\\ &\begin{aligned}r_{\textrm{pertama}}&=\left |\displaystyle \frac{3(1)-4(2)+10}{\sqrt{3^{2}+4^{2}}}   \right |\\ &=\left | \displaystyle \frac{3-8+10}{\sqrt{5^{2}}} \right |=\left | \displaystyle \frac{5}{5} \right |=\left | 1 \right |=1\\ \textrm{sehingga} &\\ r_{\textrm{kedua}}&=5-r_{\textrm{pertama}}=5-1=4 \end{aligned}\\ &\textrm{maka persamaan lingkaran keduanya adalah}:\\ &\begin{aligned}&(x-4)^{2}+(y-6)^{2}=4^{2}\\ &\Leftrightarrow x^{2}-8x+16+y^{2}-12y+36=16\\ &\Leftrightarrow \color{red}x^{2}+y^{2}-8x-12y+36=0 \end{aligned}\\ &\textbf{Berikut ilustrasi gambarnya} \end{array}$.

$\begin{array}{ll}\\ 29.&\textrm{Garis kuasa (tali busur sekutu)}\\ &\textrm{dari lingkaran}\\ &L_{1}\equiv x^{2}+y^{2}+6x-4y-12=0\\ &\textrm{dan}\: \: L_{2}\equiv x^{2}+y^{2}-12y=0\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad 3x+4y+9=0\\ &\textrm{b}.\quad 3x-4y-8=0\\ &\textrm{c}.\quad 3x-4y+7=0\\ &\textrm{d}.\quad 3x+4y-7=0\\ &\textrm{e}.\quad \color{red}3x+4y-6=0\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui}\\ &L_{1}\equiv x^{2}+y^{2}+6x-4y-12=0,\\ &\textrm{dan}\: \: L_{2}\equiv x^{2}+y^{2}-12y=0\\ &\textrm{Persamaan}\: \: \color{red}\textrm{garis kuasa}\: \color{black}\textrm{dari kedua}\\ &\textrm{lingkaran tersebut adalah}:\\ &\color{blue}L_{1}(x,y)- L_{2}(x,y)=0\\ &\Leftrightarrow x^{2}+y^{2}+6x-4y-12\\ &-(x^{2}+y^{2}-12y)=0\\ &\Leftrightarrow 6x+8y-12=0\\ &\Leftrightarrow \color{red}3x+4y-6=0 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 30.&\textrm{Jika dua lingkaran}\\ & x^{2}+y^{2}=9\: \: \textrm{dan}\\ &x^{2}+y^{2}-4y+2y+3=0\: \: \textrm{yang}\\ &\textrm{berpotongan di}\: \: (x_{1},y_{1})\: \: \textrm{dan}\: \: (x_{2},y_{2}),\\ &\textrm{maka nilai}\: \: 5(x_{1}+x_{2})\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad \color{red}24\\ &\textrm{b}.\quad 26\\ &\textrm{c}.\quad 28\\ &\textrm{d}.\quad 30\\ &\textrm{e}.\quad 32\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui}\\ &L_{1}\equiv x^{2}+y^{2}-9=0\: \: \textrm{dan}\\ &L_{2}\equiv x^{2}+y^{2}-4x+2y+3\\ &\textrm{Persamaan}\: \: \color{red}\textrm{garis kuasa}\: \color{black}\textrm{dari kedua}\\ &\textrm{lingkaran tersebut adalah}:\\ &\color{blue}L_{1}(x,y)- L_{2}(x,y)=0\\ &\Leftrightarrow x^{2}+y^{2}-9\\ &-(x^{2}+y^{2}-4y+2y+3)=0\\ &\Leftrightarrow 4x-2y-12=0\\ &\Leftrightarrow 2x-y-6=0\\ &\Leftrightarrow y=6-2x \end{aligned}\\ &\textrm{Selanjutnya}\\ &\begin{aligned}&x^{2}+y^{2}-9=0\\ &\Leftrightarrow x^{2}+(6-2x)^{2}-9=0\\ &\Leftrightarrow x^{2}+36-24x+4x^{2}-9=0\\ &\Leftrightarrow 5x^{2}-24x+27=0\\ &\Leftrightarrow x_{1,2}=\displaystyle \frac{24\pm \sqrt{576-540}}{10}\\ &\Leftrightarrow x_{1,2}=\displaystyle \frac{24\pm \sqrt{36}}{10}=\frac{24\pm 6}{10}\\ &\Leftrightarrow x_{1,2}=\displaystyle \frac{24\pm \sqrt{36}}{10}=\frac{24\pm 6}{10}\\ &\Leftrightarrow \quad x_{1}=3\: \: \textrm{atau}\: \: x_{2}=1,8\\ &\textrm{maka}\: \: 5(x_{1}+x_{2})=5\left ( 3+1,8 \right )=\color{red}24 \end{aligned} \end{array}$.


Lanjutan Ketaksamaan Schur

(Bagian Kedua)

Bagian Pertama silahkan klik di sini

1. Penyederhanaan dengan pola siklik dan simetri

$.\quad\begin{aligned}&\color{red}\textrm{Mengenal penulisan pola}\: \textbf{Siklik dan Simetri}\\ &\textrm{Misal untuk}\: \: n=3,\: \: \textrm{pada penulisan unsur}\\ &x,y,\: \: \textrm{dan}\: \: z,\: \textrm{maka}\\ &\begin{array}{|l|l|}\hline \textbf{Pola Siklik}&\textbf{Pola Simetri}\\\hline\begin{aligned}\displaystyle \sum_{\textrm{siklik}}^{.}x^{2}=x^{2}+y^{2}+z^{2}\\ &\\ &\\ &\\ &\\ & \end{aligned} &\begin{aligned}\displaystyle\sum_{\textrm{sym}}^{.}x^{2}&=x^{2}+x^{2}\\ &+y^{2}+y^{2}\\ \\ &+z^{2}+z^{2}\\ \\ &=2\left (x^{2}+y^{2}+z^{2}  \right ) \end{aligned}\\ \begin{aligned}\displaystyle \sum_{\textrm{siklik}}^{.}x^{3}=x^{3}+y^{3}+z^{3}\end{aligned}&\begin{aligned}\displaystyle \sum_{\textrm{sym}}^{.}x^{3}=2\left (x^{3}+y^{3}+z^{3}  \right ) \end{aligned}\\ \begin{aligned}\displaystyle \sum_{\textrm{siklik}}^{.}x^{2}y=x^{2}y+y^{2}z+z^{2}x\\ &\\ &\\ & \end{aligned}&\begin{aligned}\displaystyle \sum_{\textrm{sym}}^{.}x^{2}y&=x^{2}y+x^{2}z\\ &+y^{2}x+y^{2}z\\\\ &+z^{2}x+z^{2}y \end{aligned}\\ \begin{aligned}\displaystyle \sum_{\textrm{siklik}}^{.}xyz&=xyz+yzx+zxy\\ &=3xyz \end{aligned}&\begin{aligned}\displaystyle \sum_{\textrm{sym}}^{.}xyz&=xyz+xzy+\cdots \\ &=6xyz \end{aligned}  \\\hline \end{array} \end{aligned}$

2. Bentuk ketaksamaan berdasar nilai r

Masih ingat kita pada ketaksamaan Schur saat $r=1$, yaitu,:

$\begin{aligned}&a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b)\\ &=a^{3}+b^{3}+c^{3}-\left( a^{2}b+a^{2}c+b^{2}a+b^{2}c+c^{2}a+c^{2}b \right)+3abc\\ &=\displaystyle \sum_{\textrm{sym}}^{.}\left( a^3-2a^{2}b+abc \right)\ge 0 \end{aligned}$.

Selanjutnya saat  $\color{red}r=1$, kita bisa mendaptkan

$\begin{aligned}1.\quad &a^{3}+b^{3}+c^{3}+3abc\geq ab(a+b)+bc(b+c)+ca(c+a)\\ 2.\quad &abc\geq (a+b-c)(b+c-a)(c+a-b)\\ 3.\quad &(a+b+c)^{3}+9abc\geq 4(a+b+c)(ab+bc+ca) \end{aligned}$.

Dan saat  $\color{red}r=2$, kita bisa mendaptkan

$\begin{aligned}a^{4}+&b^{4}+c^{4}+abc(a+b+c)\geq ab(a^{2}+b^{2})+bc(b^{2}+c^{2})+ca(c^{2}+a^{2}) \end{aligned}$.

3. Beberapa formulasi bantu

$\begin{aligned}1.\quad&\color{red}(a+b+c)(a^{2}+b^{2}+c^{2})\\&=a^{3}+b^{3}+c^{3}+a(b^{2}+c^{2})+b(a^{2}+c^{2})+c(a^{2}+b^{2})\\ 2.\quad&\color{red}(a+b+c)(a^{2}+b^{2}+c^{2})\\ &=a^{3}+b^{3}+c^{3}+a^{2}(b+c)+b^{2}(a+c)+c^{2}(a+b)\\ 3.\quad&\color{red}(a+b+c)(ab+ac+bc)\\ &=3abc+ab(a+b)+ac(a+c)+bc(b+c)\\ 4.\quad&\color{red}(a+b+c)(ab+ac+bc)\\ &=3abc+a^{2}(b+c)+b^{2}(a+c)+c^{2}(a+b)\\ 5.\quad&\color{red}(a+b+c)^{3}+3abc\\ &=a^{3}+b^{3}+c^{3}+3(a+b+c)(ab+ac+bc)\\ 6.\quad&\color{red}(a+b)(a+c)(b+c)\\ &=2abc++a^{2}(b+c)+b^{2}(a+c)+c^{2}(a+b)\\ 7.\quad&\color{red}(a+b-c)(a+c-b)(b+c-a)\\ &=-2abc-(a^{3}+b^{3}+c^{3})+a^{2}(b+c)+b^{2}(a+c)+c^{2}(a+b)\\ 8.\quad&\color{red}(a-b)(b-c)(c-a)\\ &=a^{2}(c-b)+b^{2}(a-c)+c^{2}(b-a)\\  \end{aligned}$.

4. Penyederhanaan ketaksamaan metode pqr

$\begin{array}{|l|l|}\hline .\qquad\qquad\textbf{Kesamaan}&\quad \qquad\textbf{Ketaksamaan}\\\hline\begin{aligned}1.\quad&\displaystyle \sum_{sik}^{.}x^{2}=p^{2}-2q\\ 2.\quad&\displaystyle \sum_{sik}^{.}x^{3}=p(p^{2}-3q)+3r\\ 3.\quad&\sum_{sik}^{.}x^{2}y^{2}=q^{2}-2pr\\ 4.\quad&\prod (x+y)=pq-r\\ 5.\quad&\sum_{sik}^{.}xy(x+y)=pq-3r\\ 6.\quad&\sum_{sik}^{.}x^{2}(y+z)=pq-3r\\ 7.\quad&\prod (1+x)=1+p+q+r\\ &\\ &\\ &\\ &\\ & \end{aligned} &\begin{aligned}1.\quad&pq\geq 9r\\ 2.\quad&p^{2}\geq 3q\\ 3.\quad&q^{2}\geq 3pr\\ 4.\quad&p^{3}\geq 27r\\ 5.\quad&q^{3}\geq 27r^{2}\\ 6.\quad&p^{3}r\geq q^{3}\\ 7.\quad&p^{3}+9r\geq 4pq\\ 8.\quad&2p^{3}+9r\geq 7pq\\ 9.\quad&2p^{3}+27r\geq 9pq\\ 10.\quad&2p^{3}+9r^{2}\geq 7pqr\\ 11.\quad&q^{3}+9r^{2}\geq 4pqr\\ 12.\quad&2q^{3}+27r^{2}\geq 9pqr\\ 13.\quad&p^{4}+3q^{2}\geq 4p^{2}q\\ 14.\quad&p^{4}+4q^{2}+6pr\geq 5p^{2}q\\ 15.\quad&p^{2}q+3pr\geq 4q^{2}\\ 16.\quad&pq^{2}\geq 2p^{2}r+3qr\\ 17.\quad&p^{2}q^{2}+12r^{2}\geq 4p^{3}r+pqr \end{aligned}  \\\hline \end{array}$.

5. Ketaksamaan Schur bentuk pqr

Perhatikan poin 2 di atas saat $r=1$, kitaa akan medapatkan bentuk berikut ini:

$\begin{aligned}&(a+b+c)^{3}+9abc\geq 4(a+b+c)(ab+bc+ca)\\ &\Leftrightarrow \color{red}p^{3}+9r\geq 4pq \end{aligned}$.


$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1&\textrm{Untuk}\: \: a,b,c\: \: \textrm{tak negatif, tunjukkan bahwa}\\ &(a+b+c)(ab+ac+bc)\geq 9abc\\\\ &\textbf{Bukti}\\ &\textrm{Misalkan}\\ &p=a+b+c,\: q=ab+ac+bc,\\ &\textrm{dan}\: \: r=abc\\ &\textrm{Untuk pembuktian pernyataan di atas}\\ &\textrm{dengan AM-GM kita memiliki}\\ &\bullet\quad a+b+c\geq 3\sqrt[3]{abc}\\ &\bullet\quad ab+ac+bc\geq 3\sqrt[3]{(abc)^{2}}\\ &\textrm{maka hasil dari}\\ &(a+b+c)(ab+ac+bc)\geq 3\sqrt{abc}.3\sqrt[3]{(abc)^{2}}\\ &\Leftrightarrow pq\geq 3\sqrt[3]{r}.3\sqrt[3]{r^{2}}\\ &\Leftrightarrow pq\geq 9\sqrt[3]{r^{3}}\\ &\Leftrightarrow \color{red}pq\geq 9r\qquad \color{black}\blacksquare   \end{array}$.

$\begin{array}{ll}\\ 2&\textrm{Untuk}\: \: a,b,c\: \: \textrm{tak negatif, tunjukkan bahwa}\\ &(a+b+c)^{2}\geq 3(ab+ac+bc)\\\\ &\textbf{Bukti}\\ &\color{blue}\textbf{Alternatif 1}\\ &\textrm{Misalkan}\\ &p=a+b+c,\: q=ab+ac+bc,\\ &\textrm{dan}\: \: r=abc\\ &\textrm{Untuk pembuktian pernyataan di atas}\\ &\textrm{dengan AM-GM kita memiliki}\\ &\bullet\quad a^{2}+b^{2}+c^{2}\geq ab+ac+bc\\ &\textrm{Dan juga sebuah kesamaan}\\ &\bullet \quad a^{2}+b^{2}+c^{2}=(a+b+c)^{2}-2(ab+ac+bc)\\ &\textrm{maka dari kedua bentuk di atas kita akan}\\ &\textrm{dapatkan bentuk}\\ &a^{2}+b^{2}+c^{2}\geq ab+ac+bc\\ &\Leftrightarrow (a+b+c)^{2}-2(ab+ac+bc)\geq ab+ac+bc\\ &\Leftrightarrow (a+b+c)^{2}\geq 3(ab+ac+bc)\\ &\Leftrightarrow  \color{red}p^{2}\geq 3q\qquad \color{black}\blacksquare\\ &\begin{aligned}&\color{blue}\textbf{Alternatif 2}\\ &\textrm{Telah kita ketahui bahwa}\\ &(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(ab+ac+bc)\\ &\textrm{Dengan ketaksamaan}\: \textbf{renata}\: \textrm{kita akan}\\ &\textrm{dapatkan bentuk}\\ &(a+b+c)^{2}\geq ab+bc+ca+2(ab+ac+bc)\\ &\Leftrightarrow (a+b+c)^{2}\geq 3(ab+ac+bc)\\ &\Leftrightarrow  \color{red}p^{2}\geq 3q\qquad \color{black}\blacksquare  \end{aligned}  \end{array}$.

$\begin{array}{ll}\\ 3.&\textrm{Untuk}\: \: a,b,c\: \: \textrm{tak negatif, tunjukkan}\\ &\textrm{bahwa}\: \: (ab+ac+bc)^{2}\geq 3abc(a+b+c)\\\\ &\textbf{Bukti}\\ &\textrm{Misalkan}\\ &p=a+b+c,\: q=ab+ac+bc,\\ &\textrm{dan}\: \: r=abc\\ &\textrm{Perhatikan kesamaan berikut}\\ &\begin{aligned}&(ab+ac+bc)^{2}=a^{2}b^{2}+a^{2}c^{2}+b^{2}c^{2}+2abc(a+b+c)\\  &\textrm{Dengan AM-GM dan GM-AM kita dapatkan}\\ &\Leftrightarrow (ab+ac+bc)^{2}\geq 3\sqrt[3]{a^{4}b^{4}c^{4}}+2abc(a+b+c)\\ &\Leftrightarrow (ab+ac+bc)^{2}\geq 3abc\sqrt[3]{abc}+2abc(a+b+c)\\ &\Leftrightarrow (ab+ac+bc)^{2}\geq abc(a+b+c)+2abc(a+b+c)\\ &\Leftrightarrow (ab+ac+bc)^{2}\geq 3abc(a+b+c)\\ &\Leftrightarrow \color{red}q^{2}\geq 3pr\qquad \color{black}\blacksquare  \end{aligned}   \end{array}$.

$\begin{array}{ll}\\ 4.&\textrm{Untuk}\: \: a,b,c\: \: \textrm{tak negatif, tunjukkan bahwa}\\ &(a+b+c)^{3}\geq 27abc\\\\ &\textbf{Bukti}\\ &\textrm{Misalkan}\\ &p=a+b+c,\: q=ab+ac+bc,\\ &\textrm{dan}\: \: r=abc\\ &\textrm{Untuk pembuktian pernyataan di atas}\\ &\textrm{dengan AM-GM kita memiliki}\\ &\bullet\quad a+b+c\geq 3\sqrt[3]{abc}\\ &\textrm{Masing-masing ruas pangkatkan 3, maka}\\ &(a+b+c)^{3}\geq 27abc\Leftrightarrow \color{red}p^{3}\geq 27r\qquad \color{black}\blacksquare  \end{array}$.

$\begin{array}{ll}\\ 5.&\textrm{Untuk}\: \: a,b,c\: \: \textrm{tak negatif, tunjukkan bahwa}\\ &(a+b+c)^{3}\geq 27abc\\\\ &\textbf{Bukti}\\ &\textrm{Misalkan}\\ &p=a+b+c,\: q=ab+ac+bc,\\ &\textrm{dan}\: \: r=abc\\ &\textrm{Untuk pembuktian pernyataan di atas}\\ &\textrm{dengan AM-GM kita memiliki}\\ &\bullet\quad ab+ac+bc\geq 3\sqrt[3]{(abc)^{2}}\\ &\textrm{Masing-masing ruas pangkatkan 3, maka}\\ &(ab+ac+bc)^{3}\geq 27(abc)^{2}\Leftrightarrow \color{red}q^{3}\geq 27r^{2}\qquad \color{black}\blacksquare  \end{array}$.

$\begin{array}{ll}\\ 6.&\textrm{Misalkan}\: \: x,y,x\: \: \textrm{bilangan real positif dengan}\\ &\textrm{tunjukkan bahwa}\\ &\quad a^{2}+b^{2}+c^{2}+2abc+1\geq 2(ab+acb+c)\\&\qquad\qquad\qquad\qquad\qquad (\textbf{Darij Grinberg})\\\\ &\textbf{Bukti}\\ &\textrm{Dengan}\: \: \textbf{ketaksamaan AM-GM}\: \: \textrm{dan}\\ &\textrm{dilanjutkan dengan}\: \: \textbf{ketaksamaan Schur}\\ &\textrm{serta menggesernya ke ruas kiri, maka}\\ &a^{2}+b^{2}+c^{2}+2abc+1- 2(ab+ac+bc)\\ &\geq a^{2}+b^{2}+c^{2}+3(abc)^{^{\frac{2}{3}}}+1\geq 2(ab+ac+bc)\\ &\geq \left ((a)^{^{\frac{2}{3}}}  \right )^{3}+\left ((b)^{^{\frac{2}{3}}}  \right )^{3}+\left ((c)^{^{\frac{2}{3}}}  \right )^{3}+3(abc)^{^{\frac{2}{3}}}-2(ab+ac+bc)\\ &\geq a^{.^{\frac{2}{3}}}b^{.^{\frac{2}{3}}}\left (a^{.^{\frac{2}{3}}} +b^{.^{\frac{2}{3}}} \right )+a^{.^{\frac{2}{3}}}c^{.^{\frac{2}{3}}}\left (a^{.^{\frac{2}{3}}} +c^{.^{\frac{2}{3}}} \right )\\ &\quad +b^{.^{\frac{2}{3}}}c^{.^{\frac{2}{3}}}\left (b^{.^{\frac{2}{3}}} +c^{.^{\frac{2}{3}}} \right )-2(ab+ac+bc)\\ &\geq a^{.^{\frac{2}{3}}}b^{.^{\frac{2}{3}}}\left (a^{.^{\frac{2}{3}}} +b^{.^{\frac{2}{3}}} \right )+a^{.^{\frac{2}{3}}}c^{.^{\frac{2}{3}}}\left (a^{.^{\frac{2}{3}}} +c^{.^{\frac{2}{3}}} \right )\\ &\quad +b^{.^{\frac{2}{3}}}c^{.^{\frac{2}{3}}}\left (b^{.^{\frac{2}{3}}} +c^{.^{\frac{2}{3}}} \right )-2(ab+ac+bc)\\ &= a^{.^{\frac{2}{3}}}b^{.^{\frac{2}{3}}}\left (a^{.^{\frac{2}{3}}} -b^{.^{\frac{2}{3}}} \right )^{2}+a^{.^{\frac{2}{3}}}c^{.^{\frac{2}{3}}}\left (a^{.^{\frac{2}{3}}} -c^{.^{\frac{2}{3}}} \right )^{2}\\ &\quad +b^{.^{\frac{2}{3}}}c^{.^{\frac{2}{3}}}\left (b^{.^{\frac{2}{3}}} -c^{.^{\frac{2}{3}}} \right )^{2}\geq 0\qquad \blacksquare \end{array}$.

$\begin{array}{ll}\\ 7.&(\textbf{APMO 2004})\\ &\textrm{Misalkan}\: \: x,y,x\: \: \textrm{bilangan real positif dengan}\\ &\textrm{tunjukkan bahwa}\\ &\quad (x^{2}+2)(y^{2}+2)(z^{2}+2)\geq 9(xy+yz+zx)\\\\ &\textbf{Bukti}\\ &\color{blue}\textbf{Alternatif 1}\\ &\textrm{Dengan menjabarkan akan didapatkan}\\ &x^{2}y^{2}z^{2}+2\displaystyle \sum_{\textrm{siklik}}^{.}x^{2}y^{2}+4\displaystyle \sum_{\textrm{siklik}}^{.}x^{2}+8\geq 9\displaystyle \sum_{\textrm{siklik}}^{.}xy\\ &\textrm{Perhatikan bahwa}\\ &\bullet \quad\color{red}2\displaystyle \sum_{\textrm{siklik}}^{.}x^{2}y^{2}-4\displaystyle \sum_{\textrm{siklik}}^{.}xy+6=2\displaystyle \sum_{\textrm{siklik}}^{.}(xy-1)^{2}\geq 0\\ &\bullet  \quad \color{red}\displaystyle \sum_{\textrm{siklik}}^{.}x^{2}\geq \displaystyle \sum_{\textrm{siklik}}^{.}xy\: \: \color{black}\textrm{atau}\: \: \color{red}x^{2}+y^{2}+z^{2}\geq xy+xz+yz\\ &\textrm{Kita cukup membuktikan bahwa}\\ & x^{2}y^{2}z^{2}+\displaystyle \sum_{\textrm{siklik}}^{.}x^{2}+2\geq 2\displaystyle \sum_{\textrm{siklik}}^{.}xy\\ &\Leftrightarrow  x^{2}y^{2}z^{2}+2\geq \displaystyle \sum_{\textrm{siklik}}^{.}xy\\ &\begin{aligned}&\textrm{Untuk}\: \: a,b,c\: \: \textrm{bilangan real positif},\\ &\textbf{Ketaksamaan Schur}\: \textrm{saat}\: \: \color{red}r=1\\ &\textrm{memberikan}\\ &\displaystyle \sum_{\textrm{siklik}}^{.}a^{3}+3abc\geq \displaystyle \sum_{\textrm{siklik}}^{.}a^{2}b+\displaystyle \sum_{\textrm{siklik}}^{.}ab^{2}\\ &\qquad\qquad\qquad =ab(a+b)+bc(b+c)+ca(c+a)\\ &\textrm{Dengan}\: \: \textbf{Ketaksamaan AM-GM}\: \: \textrm{didapakan}\\ &\displaystyle \sum_{\textrm{siklik}}^{.}a^{3}+3abc\geq 2\displaystyle \sum_{\textrm{siklik}}^{.}(ab)^{\frac{3}{2}}\\ &\textrm{Pilih}\: \: a=x^{\frac{2}{3}},\: b=y^{\frac{2}{3}},\: c=z^{\frac{2}{3}},\: \textrm{maka didapatkan}\\ &(x^{\frac{2}{3}})^{3}+(y^{\frac{2}{3}})^{3}+(z^{\frac{2}{3}})^{3}+3(xyz)^{\frac{2}{3}}\geq 2(xy+yz+zx)\\ &\textrm{Selanjutnya kita selesaikan ini}\: ,\: x^{2}y^{2}z^{2}+2\geq \displaystyle \sum_{\textrm{siklik}}^{.}xy\\ &\Leftrightarrow  x^{2}y^{2}z^{2}+2 \geq 3(xyz)^{\frac{2}{3}}\\ &\textrm{Misalkan}\: \: (xyz)^{\frac{2}{3}}=t,\: \textrm{maka}\\ &t^{3}+2\geq 3t\Leftrightarrow t^{3}-3t+2\geq 0\\ &(t-1)^{2}(t+2)\geq 0\: \: \textrm{adalah hal benar} \end{aligned}   \end{array}$.

$.\: \quad\begin{aligned}&\color{blue}\textbf{Alternatif 2}\\ &x^{2}y^{2}z^{2}+2\displaystyle \sum_{\textrm{siklik}}^{.}x^{2}y^{2}+4\displaystyle \sum_{\textrm{siklik}}^{.}x^{2}+8\geq 9\displaystyle \sum_{\textrm{siklik}}^{.}xy\\ &\textrm{atau dalam bentuk utuhnya, yaitu}\\ &x^{2}y^{2}z^{2}+2(x^{2}y^{2}+x^{2}z^{2}+y^{2}z^{2})+4(x^{2}+y^{2}+z^{2})+8\geq 9(xy+xz+yz)\\ &\textrm{Sekarang kira uraikan satu persatu bagian}\\ &\bullet\quad x^{2}y^{2}z^{2}+1+1\geq 3\sqrt[3]{(xyz)^{2}}\geq \displaystyle \frac{9abc}{a+b+c}=\frac{9r}{p}\\ &\qquad \textrm{ingat bahwa}\: \: \textbf{jika ada}\: \: \displaystyle \frac{9r}{p}\geq 4q-p^{2}\\ &\qquad =4(xy+xz+yz)-(x+y+z)^{2}\\ &\qquad \textrm{adalah}\: \: \textbf{ketaksamaan Schur saat}\: \: \color{red}r=1\\ &\bullet \quad x^{2}y^{2}+1+x^{2}z^{2}+1+y^{2}z^{2}+1\geq 2(xy+xz+yz)\\ &\bullet\quad  x^{2}+y^{2}+z^{2}\geq xy+xz+yz\\ &\qquad \textrm{keduanya didapat dengan ketaksamaan}\: \: \textbf{AM-GM}\\&x^{2}y^{2}z^{2}+2(x^{2}y^{2}+x^{2}z^{2}+y^{2}z^{2})+4(x^{2}+y^{2}+z^{2})+8\\ &=x^{2}y^{2}z^{2}+2+2(x^{2}y^{2}+x^{2}z^{2}+y^{2}z^{2}+3)+4(x^{2}+y^{2}+z^{2})\\ &\geq 4(xy+xz+yz)-(x+y+z)^{2}+4(xy+xz+yz)+4(xy+xz+yz)\\ &\geq 12(xy+xz+yz)-(x+y+z)^{2}\\ &\geq 12(xy+xz+yz)-3(xy+xz+yz)\\ &=9(xy+xz+yz)\qquad \blacksquare    \end{aligned}$.

$.\: \quad\begin{aligned}&\color{blue}\textbf{Alternatif 3}\\ &(x^{2}+2)(y^{2}+2)(z^{2}+2)- 9(xy+yz+zx)\\ &\textrm{Dengan}\: \: \textbf{ketaksamaan AM-GM}\\ &=x^{2}y^{2}z^{2}+2(x^{2}y^{2}+x^{2}z^{2}+y^{2}z^{2})\\ &\quad +4(x^{2}+y^{2}+z^{2})+8- 9(xy+xz+yz)\\ &=4(x^{2}+y^{2}+z^{2})+2\left ((x^{2}y^{2}+1) +(x^{2}z^{2}+1)+(y^{2}z^{2}+1) \right )\\ &\quad +(x^{2}y^{2}z^{2}+1)+1-9(xy+xz+yz)\\ &\geq 4(x^{2}+y^{2}+z^{2})+4(xy+xz+yz)\\ &\quad +2xyz+1-9(xy+xz+yz)\\ &=(x^{2}+y^{2}+z^{2})+3(x^{2}+y^{2}+z^{2})\\ &\quad +2xyz+1-5(x^{2}+y^{2}+z^{2})\\ &\geq x^{2}+y^{2}+z^{2}+3(xy+xz+yz)\\ &+2xyz-5(xy+xz+yz)\\ &=x^{2}+y^{2}+z^{2}+2xyz+1-2(xy+xz+yz)\geq 0\\ &\textrm{adalah benar dengan bukti ada pada}\\ &\textrm{nomor soal sebelumnya}  \end{aligned}$.

$\begin{array}{ll}\\ 8.&\textrm{Misalkan}\: \: x,y,x\: \: \textrm{bilangan real positif dengan}\\ &\textrm{tunjukkan bahwa}\\ &\quad 2(a^{2}+b^{2}+c^{2})+abc+8\geq 5(a+b+c)\\&\qquad\qquad\qquad\qquad\qquad (\textbf{Tran Nam Dung})\\\\ &\textbf{Bukti}\\ &\textrm{Dengan}\: \: \textbf{ketaksamaan AM-GM}\: \: \textrm{dan}\\ &\textrm{menggeser ke ruas kiri dan masing-masing}\\ &\textrm{serta mengalikan semunya dengan 6, maka}\\ &12(a^{2}+b^{2}+c^{2})+6abc+48- 30(a+b+c)\\ &= 12(a^{2}+b^{2}+c^{2})+3(2abc+1)+45- 5.2.3(a+b+c)\\ &\geq 2(a^{2}+b^{2}+c^{2})+9\sqrt[3]{(abc)^{2}}+45- 5\left ((a+b+c)^{2}+9  \right )\\ &=12(a^{2}+b^{2}+c^{2})+\displaystyle \frac{9abc}{\sqrt[3]{abc}}-5\left ((a^{2}+b^{2}+c^{2})+2(ab+ac+bc)  \right )\\ &=7(a^{2}+b^{2}+c^{2})+ \displaystyle \frac{9abc}{\sqrt[3]{abc}}-10(ab+ac+bc)\\ &\geq  7(a^{2}+b^{2}+c^{2})+\displaystyle \frac{27abc}{a+b+c}-10(ab+ac+bc)\\ &\begin{aligned}&\textrm{dengan}\: \: \textbf{ketaksamaan Schur},\: \: \textrm{yaitu}:\\ &p^{3}+9r\geq 4pq\Leftrightarrow \displaystyle \color{red}\frac{9r}{p}\geq 4q-p^{2}\\ &\textrm{maka ketaksamaan akan menjadi}\\ &\geq 7(a^{2}+b^{2}+c^{2})+\color{blue}3(4q-p^{2})-10q\\ &\geq 7(a^{2}+b^{2}+c^{2})+2q-3p^{2}\\ &=7(a^{2}+b^{2}+c^{2})+2(ab+ac+bc)-3(a+b+c)^{2}\\ &=7(a^{2}+b^{2}+c^{2})+2q-3\left ((a^{2}+b^{2}+c^{2})+2q  \right )\\ &=4(a^{2}+b^{2}+c^{2})+2q-6q\\ &=4(a^{2}+b^{2}+c^{2})-4q\\ &=4(a^{2}+b^{2}+c^{2})-4(ab+ac+bc)\\ &=4(a^{2}+b^{2}+c^{2}-ab-ac-bc)\geq 0\quad \blacksquare  \end{aligned} \end{array}$.


DAFTAR PUSTAKA

  1. Venkatachala, B.J. 2009. Inequalities An Approach Through Problems (2nd). India: SPRINGER.
  2. Vo Tranh Van..... Bat Dang Thuc Schur Va Phuong Phap Doi Bien P, Q, R.
  3. Vo Quoc Ba Can. 2007. Bai Viet Ve Bat Dang Thuc Schur Va Vornicu Schur.
  4. Young, B. 2009. Seri Buku Olimpiade Matematika Strategi Menyelesaikan Soal-Soal Olimpiade Matematika: Ketaksamaan (Inequality). Bandung: PAKAR RAYA.

Contoh 5 Soal dan Pembahasan Materi Hubungan Dua Lingkaran

$\begin{array}{ll}\\ 21.&\textrm{Titik Kuasa dari lingkaran-lingkaran}\\ &\textrm{berikut}\\ &L_{1}\equiv x^{2}+y^{2}+x+y-14=0\\ &L_{2}\equiv x^{2}+y^{2}=13\\ &L_{3}\equiv x^{2}+y^{2}+3x-2y-26=0\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad \color{red}(3,-2)\\ &\textrm{b}.\quad (2,-3)\\ &\textrm{c}.\quad (-3,2)\\ &\textrm{d}.\quad (-2,3)\\ &\textrm{e}.\quad (3,2)\\\\ &\textbf{Jawab}:\\ &\textrm{Dengan eliminasi, kita mendapatkan}\\ &\begin{aligned}&\begin{array}{lrlll} (L_{1})&x^{2}+y^{2}+x+y&=&14\\ (L_{2})&x^{2}+y^{2}&=&13&-\\\hline &x+y&=&1&....(1) \end{array}\\ &\textrm{dan}\\ &\begin{array}{lrlll} (L_{3})&x^{2}+y^{2}+3x-2y&=&26\\ (L_{2})&x^{2}+y^{2}&=&13&-\\\hline &3x-2y&=&13&....(2) \end{array}\\ &\textrm{Selanjutnya kita eliminasi}\: (1)\& (2)\\ &\textrm{dan hasilnya adalah}:\\ &\begin{array}{rrlrl} \color{blue}(2)&3x-2y&=&13\\ \color{blue}(1)&3x+3y&=&3&-\qquad (\times 3)\\\hline &-5y&=&10&\\ &y&=&\color{red}-2&\Rightarrow x=\color{red}3 \end{array}\\ &\textrm{Jadi, titik kuasa ketiganya}: (3,-2) \end{aligned}\\ &\textbf{Sebagai ilustrasi perhatikan gambar berikut}  \end{array}$

$\begin{array}{ll}\\ 22.&\textrm{Titik-titik potong dari persekutuan dua}\\ &\textrm{lingkaran}\: \: L_{1}\equiv (x-2)^{2}+y^{2}=10\: \: \: \textrm{dan}\\ &L_{2}\equiv x^{2}+(y-2)^{2}=10\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad (3,3)\: \: \textrm{dan}\: \: (1,1)\\ &\textrm{b}.\quad \color{red}(3,3)\: \: \textrm{dan}\: \: (-1,-1)\\ &\textrm{c}.\quad (3,-3)\: \: \textrm{dan}\: \: (1,1)\\ &\textrm{d}.\quad (-3,3)\: \: \textrm{dan}\: \: (1,1)\\ &\textrm{e}.\quad (-3,-3)\: \: \textrm{dan}\: \: (-1,-1)\\\\ &\textbf{Jawab}:\\ &\color{blue}\textrm{Alternatif 1}\\ &\textrm{Dengan substitusi opsi pilihan jawaban}\\ &\textrm{maka akan ketemu jawabannya langsung}\\ &\color{blue}\textrm{Alternatif 2}\\ &\textrm{Dengan eliminasi dan ilustrasi gambar}\\ &\begin{array}{lrlll} (L_{1})&(x-2)^{2}+y^{2}&=&10\\ (L_{2})&x^{2}+(y-2)^{2}&=&10&\\&\color{blue}\textrm{menjadi}\\ (L_{1})&x^2+y^2-4x&=&6\\ (L_{2})&x^2+y^2-4y&=&6&-\\\hline &-4x+4y&=&0&\\ &\color{blue}\textrm{maka hasilnya}\\ &y&=&x \end{array} \\ &\textrm{Jelas opsi jawaban c, d salah}\\ &\textrm{karena}\: \: y=x,\\ &\textbf{Dengan bantuan ilustrasi, pilihan jawaban}\\ &\textbf{akan tampak dengan jelas}  \end{array}$.

$\begin{array}{ll}\\ 23.&\textrm{Persamaan tali busur persekutuan dua}\\ &\textrm{lingkaran}\: \: L_{1}\equiv (x-3)^{2}+y^{2}=16\: \: \: \textrm{dan}\\ &L_{2}\equiv x^{2}+(y-3)^{2}=16\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad y=-2x\\ &\textrm{b}.\quad y=-x\\ &\textrm{c}.\quad \color{red}y=x\\ &\textrm{d}.\quad y=2x\\ &\textrm{e}.\quad y=\displaystyle \frac{1}{2}x\\\\ &\textbf{Jawab}:\\ &\textrm{Dengan eliminasi, kita mendapatkan}\\ &\begin{array}{lrlll} (L_{1})&(x-3)^{2}+y^{2}&=&16\\ (L_{2})&x^{2}+(y-3)^{2}&=&16&\\&\color{blue}\textrm{menjadi}\\ (L_{1})&x^2+y^2-6x&=&9\\ (L_{2})&x^2+y^2-6y&=&9&-\\\hline &-6x+6y&=&0&\\ &\color{blue}\textrm{maka hasilnya}\\ &y&=&x \end{array}\\ &\textbf{Sebagai ilustrasi perhatikan gambar berikut}  \end{array}$.

$\begin{array}{ll}\\ 24.&\textrm{Banyaknya garis singgung persekutuan}\\ &\textrm{lingkaran-lingkaran}\: x^{2}+y^{2}+2x-6y+9=0\\ &\textrm{dan}\: \:  x^{2}+y^{2}+8x-6y+9=0\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad 0\\ &\textrm{b}.\quad \color{red}1\\ &\textrm{c}.\quad 2\\ &\textrm{d}.\quad 3\\ &\textrm{e}.\quad 4\\\\ &\textbf{Jawab}:\\ &\textrm{Perhatikan bahwa}\\ &\begin{array}{|l|l|l|}\hline \qquad\qquad\textrm{Lingakaran}&\qquad\textrm{Pusat/r}\\\hline L_{1}\equiv x^{2}+y^{2}+2x-6y+9=0&\begin{cases} P_{1} &=(-1,3) \\  r_{1} & = 1 \end{cases}\\\hline L_{2}\equiv x^{2}+y^{2}+8x-6y+9=0&\begin{cases} P_{2} &=(-4,3) \\  r_{2} & = 4 \end{cases}\\\hline \end{array} \\ &\textrm{Perhatikan pula bahwa}\: \: r_{2}-r_{1}=4-1=3\\ &\begin{aligned}&\textrm{Karena}\: \: P_{1}P_{2}=r_{2}-r_{1},\: \textrm{hal ini berarti lingkaran}\\ &L_{1}\: \: \textrm{bersinggungan di dalam dengan lingkaran}\: L_{2}\\ &\textrm{Sehingga kedua lingkaran ini hanya akan }\\ &\textrm{memiliki}\: \: \color{red}\textrm{satu}\: \: \color{black}\textrm{garis singgung persekutuan} \end{aligned}\\ &\textbf{Sebagai ilustrasi perhatikan gambar berikut}  \end{array}$.

$\begin{array}{ll}\\ 25.&\textrm{Persamaan lingkaran dengan jari-jari}\: \: 5\\ &\textrm{dan menyinggung lingkaran lain}\\ & x^{2}+y^{2}-2x-4y-20=0\: \: \: \textrm{di titik}\\ &(5,5)\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad x^{2}+y^{2}-2x-4y-120=0\\ &\textrm{b}.\quad x^{2}+y^{2}-2x-4y-120=0\\ &\textrm{c}.\quad x^{2}+y^{2}-2x-4y-120=0\\ &\textrm{d}.\quad \color{red}x^{2}+y^{2}-2x-4y-120=0\\ &\textrm{e}.\quad x^{2}+y^{2}-2x-4y-120=0\\\\ &\textbf{Jawab}:\\ &\textrm{Diketahi bahwa}\\ &\begin{aligned}&\begin{array}{rrlll} (L_{1})&(x-a)^2+(y-b)^{2}&=&5^{2}\\ (L_{2})&x^{2}+y^{2}-2x-4y&=&20& \end{array} \\ &\textrm{Titik singgung dua lingkaran}\\ &\textrm{di titik}\: \: (5,5),\: \textrm{artinya}\\ &\begin{pmatrix} 5\\  5 \end{pmatrix}=\displaystyle \frac{\begin{pmatrix} a\\  b \end{pmatrix}+\begin{pmatrix} 1\\  2 \end{pmatrix}}{2}\\ &\Leftrightarrow \begin{pmatrix} 10\\  10 \end{pmatrix}=\begin{pmatrix} a\\  b \end{pmatrix}+\begin{pmatrix} 1\\  2 \end{pmatrix}\\ &\Leftrightarrow \begin{pmatrix} a\\  b \end{pmatrix}=\begin{pmatrix} 10-1\\  10-2 \end{pmatrix}=\begin{pmatrix} 9\\  8 \end{pmatrix} \end{aligned}\\ &\begin{aligned}&\textrm{maka persamaan lingkarannya adalah}:\\ &\Leftrightarrow (x-9)^{2}+(y-8)^{2}=5^{2}\\ &\Leftrightarrow x^{2}+y^{2}-18x-16y+120=0 \end{aligned}\\  &\textbf{Berikut ilustrasi gambarnya}  \end{array}$.