Turunan Fungsi Aljabar

 A. Turunan Fungsi Aljabar

A. 1 Laju Perubahasan untuk Nilai Fungsi

Konsep turunan fungsi pada awalnya digunakan dalam bidang kususnya Matematika dan fisika, dalam hal hal ini kita berikan contohnya adalah laju perubahan kecepatan.

Coba perhatikanlah, misal pada kasus gerak jatuh bebas suatu benda yang dinyaatakan dengan  h=12gt2  dengan  h  adalah tinggi benda dengan percepatan grafitasinya adalah  g=10m/s2 dan  t  adalah waktu tempuh.

Misalkan suatu benda jatuh dari ketinggian 125 meter dari permukaan tanah dengan percepatan grafitasinya adalah g=10m/s2, maka waktu yang dibutuhkan benda tersebut untuk sampai ke tanah adalah:

h=12gt2125=12(10)t225=t25=t

Dari kejadian di atas dapat kita dapatkan kecepatan rata-ratanya yaitu: perubahan tinggi dibagi perubahan waktu terjadinya, atau misal dituliskan

v=yt=yny1tnt1

Sehingga kecepatan rata-ratanya adalah :  1255=25m/s2

Misalkan f(t) untuk fungsi yang menujukkan posisi benda yang terjatuh dalam  t dengan f(t)=5t2, maka kecepatan rata-ratanya kita dapat menghitungnya untuk beberapa selang termasuk kita dapat menghitung kecepatan sesaatnya.
Coba perhatikanlah tabel berikut:

{f(4)=5.42=80f(3)=5.32=45v=804543=351=35{f(3,5)=5.(3,5)2=61,25f(3)=5.32=45v=61,25453,53=16,250,5=32,5{f(3,25)=5.(3,25)2=f(3)=5.32=45v=52,8125453,253=7,81250,25=31,25{f(3,1)=5.(3,1)2=48,05f(3)=5.32=45v=48,05453,13=3,050,1=30,5{f(3,1)=5.(3,01)2=45,3005f(3)=5.32=45v=45,3005453,013=0,30050,01=30,05

Dari ilsutrasi tabel di atas jika selisih waktu diperkecil terus menerus sampai mendekati nol, maka kecepatan sesaatnya akan mendekati nilai 30.

Sehingga kecepatan ketika t=3 ditentukan sebagai laju perubahan jarak terhadap waktu yang dibutuhkan dapat dituliskan dengan:

Laju perubahan rata-rataLaju perubahan sesaatΔyΔx=f(x2)f(x1)x2x1Limh0f(a+h)f(a)h.

Selanjutnya jika benda jatuh yang memenuhi kasus di atas, jika dihitung dengan pendekatan ini saat  t=3  adalah:

Limh0f(t+h)f(t)h=Limh05(t+h)25t2h=Limh05(t2+2th+h2)5t2h=Limh05t2+10th+5h25t2h=Limh010th+5h2h=Limh010t+5h=10t

Dari saat  t=3  kecepatan sesaatnya adalah 10t=10(3)=30m/s2.

Secara matematis, perubahan laju terhadap suatu fungsi di  x=a selanjutnya dinotasikan dengan f(x) dan didefiniskan dengan:

f(x)=Limh0f(x+h)f(x)h

Bentuk di atas dinamakan dengan derivatif atau turunan pertama pada fungsi  f(x)  dan dinotasikan dengan  f(x) dan proses pencarian derivatif ini dinamakan differensial.

CONTOH SOAL.

1.Jikag(x)=3x5,hitunglah laju perubahan fungsigdix=2Jawab:Diketahui bahwag(x)=3x5Cara PertamaCara Keduag(x)=3x5g(2)=3.25=1g(2)=Limx2g(x)g(2)x2=Limx2(3x5)(1)x2=Limx23x6x2=Limx23=3g(2)=1g(2+h)=3(2+h)5=3h+1g(2+h)g(2)=3hg(2)=Limh0g(2+h)g(2)h=Limh03hh=Limh03=3Jadi, laju perubahan fungsigdix=2adalah3.

2.Diketahuif(x)=2022x2,tentukanlahf(x)danf(1)Jawab:f(x)f(1)f(x)=2022x2f(x+h)=2022(x+h)2=2022(x2+2xh+h2)=2022x2+4044xh+2022h2f(x)=Limh0f(x+h)f(x)h=Limh0(2022x2+4044xh+2022h2)(2022x2)h=Limh04044xh+2022h2h=Limh04044x+2022h=4044xf(x)=4044xmaka,f(1)=4044.1=4044.

3.Tentukanlah kecepatan jika diketahuif(t)=sintsaattJawab:f(t)=v(t)=Limh0f(t+h)f(t)h=Limh0sin(t+h)sinth=Limh02cos12(2t+h)sin12hh=Limh02cos12(2t+h).sin12hh=Limh02cos12(2t+h)×12=2cos12(2t+0)×12=cos12(2t)=cost

4.Diketahui sebuah bola bergerak melingkar beraturandengan persamaanf(t)=2sin2t.Tentukanlahkecepatan bola saatt=112πJawab:v(t)=Limh0f(t+h)f(t)h=Limh04sin2(t+h)2sin2th=Limh04cos12(4t+2h)sin12(2h)h=Limh04cos12(4t+2h)×Limh0sinhh=4cos12(4t)=4cos2tv(112π)=4cos2(112π)=4cos16π=4(123)=23


DAFTAR PUSTAKA
  1. Noormandiri, B. K. 2004. Matematika SMA Jilid 2A Berdasarkan Kurikulum 2004. Jakarta: ERLANGGA.
  2. Noormandiri, B. K. 2017. Matematika Jilid 3 untuk SMA/MA Kelas XII Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA.




Tidak ada komentar:

Posting Komentar

Informasi