Contoh Soal 7 Materi Integral Tentu Fungsi Aljabar

31.Jika[x]menyatakan bilangan bulatterbesar yangx,maka nilai dari13[x+12]dx=....a.3b.312c.4d.412e.5Jawab:.

.13[x+12]dx=1121dx+12120dx+12321dx+32522dx+5233dx=1|112+0|1212+x|1232+2x|3252+3x|523=(12+1)+0+(3212)+2(5232)+3(352)=12+0+1+2+32=4Perhatikan tabel berikut.

32.Jika[x]menyatakan bilangan bulatterbesar yangx,maka nilai dari13[x+13]dx=....a.3b.313c.423d.513e.613Jawab:.

.13[x+13]dx=1131dx+13230dx+23531dx+53832dx+8333dx=1|113+0|1323+x|2353+2x|5383+3x|833=(13+1)+0+(5323)+2(8353)+3(383)=23+0+1+2+33=313.

33.Jika[x]menyatakan bilangan bulatterbesar yangx,maka nilai dari0n[x]dx=....a.n2b.n(n1)2c.n(n+1)2d.(n+1)(n+2)2e.n2+12Jawab:.

.0nf(x)dx=0n[x]dx=010dx+121dx+232dx++n1n(n1)dx=0+x|12+2x|23++(n1)x|n1n=0+(21)+2(32)++(n1)(n(n1))=0+1+2+(n1)=(n1)((n1)+1)2=n(n1)2Perhatikan tabel berikut.

34.Jika[x]menyatakan bilangan bulatterbesar yangx,maka nilai dari20222022[x]dx=....a.2022b.202022[x]dxc.0d.202022[x]dxe.2022Jawab:20222022[x]dx=20222021[x]dx+20212020[x]dx++20212022[x]dx=2022+(2021)++2020+2021=2022.

35.Jika[x]menyatakan bilangan bulatterbesar yangx,maka nilai dari20222022(x[x])dx=....a.2022b.202022[x]dxc.0d.202022[x]dxe.2022Jawab:20222022(x[x])dx=20222022xdx(20222021[x]dx++20212022[x]dx)Sebelumnya perlu diingat bahwa20222022xdxadalahfungsi ganjil, maka=0Sehingga nilai akhirnya adalah=0(2022)lihat pembahasan sebelumnya=2022.



Tidak ada komentar:

Posting Komentar

Informasi