Belajar matematika sejak dini
Rumus Turunan dan Sifat Turunan Pertama
Untuk:{a∈Rn∈QckonstantaU=g(x)V=h(x).
Sifat-Sifaty=c→y′=0y=c.U→y′=c.U′y=U±V→y′=U′±V′y=U.V→y′=U′.V+U.V′y=UV→y′=U′.V−U.V′V2Fungsi Aljabary=a.xn→y′=n.a.x(n−1)y=a.Un→y′=n.a.U(n−1).U′Fungsi Trigonometriy=asinU→y′=(acosU).U′y=acosU→y′=(−asinU).U′y=atanU→y′=(asec2U).U′Aturan rantai pada turunan untuky=f(u),jikauntukumerupakan fungsix,maka:y′=f′(x).u′ataudydx=dydu.dudx.
CONTOH SOAL.
1.Dengan menggunakan rumus turunanf′(x)=Limh→0f(x+h)−f(x)h,tunjukkan bahwa turunana.f(x)=axnadalahf′(x)=n.axn−1b.f(x)=u(x)+v(x)adalahf′(x)=u′(x)+v′(x)c.f(x)=u(x).v(x)adalahf′(x)=u′(x).v(x)+u(x).v′(x)d.f(x)=u(x)v(x)adalahf′(x)=u′(x).v(x)+u(x).v′(x)(v(x))2e.f(x)=sinxadalahf′(x)=cosxf.f(x)=cosxadalahf′(x)=−sinxg.f(x)=tanxadalahf′(x)=sec2xh.f(x)=cotxadalahf′(x)=−csc2x.
Bukti1.af′(x)=Limh→0f(x+h)−f(x)hf′(x)=Limh→0a(x+h)n−axnh=Limh→0a(xn+(n1)xn−1.h+(n2)xn−2.h2+(n3)xn−3.h3+⋯+(nn−1)x.hn−1+hn)−axnh=Limh→0a((n1)xn−1.h+(n2)xn−2.h2+(n3)xn−3.h3+⋯+(nn−1)x.hn−1+hn)h=Limh→0ah((n1)xn−1+(n2)xn−2.h+(n3)xn−3.h2+⋯+(nn−1)x.hn−2+hn−1)h=Limh→0a(n1)xn−1+a(n2)xn−2.h+a(n3)xn−3.h2+⋯+ahn−1=a(n1)xn−1+0+0+...+0=a.n!(n−1)!.1!xn−1=a.n.(n−1)!(n−1)!xn−1=a.n.xn−1◼.
1.bf′(x)=Limh→0f(x+h)−f(x)hf′(x)=Limh→0(u(x+h)+v(x+h))−(u(x)+v(x))h=Limh→0(u(x+h)−u(x)h+v(x+h)−v(x)h)=Limh→0u(x+h)−u(x)h+Limh→0v(x+h)−v(x)h=u′(x)+v′(x)◼.
1.cf′(x)=Limh→0f(x+h)−f(x)hf′(x)=Limh→0(u(x+h)×v(x+h))−(u(x)×v(x))h=Limh→0u(x+h)×v(x+h)−u(x+h)×v(x)+u(x+h)×v(x)−u(x)×v(x)h=Limh→0(u(x+h)×v(x+h)−v(x)h+v(x)×u(x+h)−u(x)h)=Limh→0u(x+h)×Limh→0v(x+h)−v(x)h+Limh→0v(x)×Limh→0u(x+h)−u(x)h=u(x)×v′(x)+v(x)×u′(x)=u′(x)×v(x)+u(x)×v′(x)◼.
1.dMisalkanp(x)=u(x)v(x)Sebelumnya telah diketahui dari no. 1. cu(x)=p(x)×v(x)u′(x)=p′(x)×v(x)+p(x)×v′(x)Sekarang kita substitusikan pemisalandi atas, yaitu:p′(x)×v(x)=u′(x)−p(x)×v′(x)=u′(x)−u(x)v(x)×v′(x)=u′(x)×v(x)−u(x)×v′(x)v(x)p′(x)=u′(x)×v(x)−u(x)×v′(x)v2(x)◼.
1.ef′(x)=Limh→0f(x+h)−f(x)hf′(x)=Limh→0sin(x+h)−sinxh=Limh→02cos12(2x+h)sin12hh=Limh→02cos12(2x+h).sin12hh=Limh→02cos12(2x+h)×12=2cos12(2x+0)×12=cos12(2x)=cosx◼ .
1.ff′(x)=Limh→0f(x+h)−f(x)hf′(x)=Limh→0cos(x+h)−cosxh=Limh→0−2sin12(2x+h)sin12hh=Limh→0−2sin12(2x+h).sin12hh=Limh→0−2sin12(2x+h)×12=−2sin12(2x+0)×12=−sin12(2x)=−sinx◼.
1.gf′(x)=Limh→0f(x+h)−f(x)hf′(x)=Limh→0tan(x+h)−tanxh=Limh→0tanx+tanh1−tanx.tanh−tanxh=Limh→0tanx+tanh−tanx+tan2x.tanh1−tanx.tanhh=Limh→0tanh(1+tan2x)h(1−tanx.tanh)=Limh→0tanhh×Limh→01+tan2x1−tanx.tanh=1×1+tan2x1−0=1+tan2x=sec2x◼.
2.Tentukanlah turunannyaa.f(x)=x6i.f(x)=(x+1)(x−2)q.f(x)=2x3b.f(x)=12x2j.f(x)=(3−x)(5−x)r.f(x)=12xc.f(x)=−2x5k.f(x)=(2x+3)2s.f(x)=13x5d.f(x)=ax3l.f(x)=(x−2)3t.f(x)=2x4+12x3e.f(x)=4x4−x2+2017m.f(x)=(4x+1)(4x−1)u.f(x)=x2+2xf.f(x)=6−x−3x2n.f(x)=(x−1)(x+1)(x+2)v.f(x)=(2x3+1x)2g.f(x)=(x−3)2o.f(x)=12x−4w.f(x)=x2(1+x)2h.f(x)=(x3−2)2p.f(x)=x−5x.f(x)=2+4xx2y.f(x)=(x+1+1x)(x+1−1x).
Untuky=f(x)makaabcy=x6y′=6x6−1=6x5y=12x2y′=2.12x2−1=xy=−2x5y′=−5.2x5−1=−10x4defy=ax3y′=3.a.x3−1=3.a.x2y=4x4−x2+2017y′=4.4x4−1−2.x2−1+0=16x3−2xy=6−x−3x2y′=0−1.x1−1−2.3x2−1=−1−6x.
ghy=(x−3)2y′=2.(x−3)2−1.1=2(x−3)y=(x3−2)2y′=2.(x3−2)2−1.3x2=6(x3−2)x2=6x5−12x2ijy=(x+1)(x−2)y′=1.(x+2)+(x+1).1=2x+3y=(3−x)(5−x)y′=−1.(5−x)+(3−x).−1=2x−8 .
klm1m2y=(2x+3)2y′=2.(2x+3)2−1.2=4(2x+3)1=8x+12y=(x−2)3y′=3(x−2)3−1.1=3(x−2)2y=(4x+1)(4x−1)cara 1y′=4(4x−1)+(4x+1).4=16x−4+16x+4=32xy=(4x+1)(4x−1)cara 2y=16x2−1y′=2.16x2−1−0=32x1=32xnopqy=(x−1)(x+1)(x+2)=(x2−1)(x+2)=x3+2x2−x−2y′=3x3−1+2.2x2−1−x1−1−0=3x2+4x−1y=12x−4y′=−4.12x−4−1=−2x−5=−2x5y=x−5y′=−5.x−5−1=−5x−6=−5x6y=2x3=2x−3y′=−3.2x−3−1=−6x−4=−6x4.
rstuy=12x=12x12=12x−12y′=−12.12x−12−1=−14x−32=−14x32=−14x3y=13x5=13x−5y′=−5.13x−5−1=−53x−6=−53x6y=2x4+12x3=2x4+12x−3y′=4.2x4−1+(−3).12x−3−1=8x3−32x−4=8x3−32x4y=x2+2x=12x+2x−1y′=12x1−1+(−1).2x−1−1=12x0−2x−2=12−2x2.
vwy=(2x3+1x)2=(2x3+x−1)2y′=2.(2x3+x−1)2−1.(3.2x3−1+(−1)x−1−1)=2.(2x3+x−1)1.(6x2−x−2)=2(2x3+1x)(6x2−1x2)=2(12x5−2x+6x−1x3)=24x5+8x−2x3y=x2(1+x)2=x2(1+x12)2y′=2x.(1+x12)2+x2.2.(1+x12)2−1.(0+12.x12−1)=2x(1+x)2+2x2.(1+x).(12x−12)=2x(1+x)2+2x2.(12x12).(1+x)=2x(1+x)2+x2−12.(1+x)=2x(1+x)2+x32(1+x)=2x(1+x)2+(xx+x2).
x1x2y=UVy′=U′.V−U.V′V2y=UVy′=U′.V+U.V′U=2+4x→U′=4V=x2→V′=2xU=2+4x→U′=4V=x2→V′=2xy=2+4xx2y′=(4)(x2)−(2+4x).(2x)(x2)2=4x2−4x−8x2x4=−4x2−4xx4=−4x−4x3y=2+4xx2=(2+4x).x−2y′=(4).x−2+(2+4x).−2x−2−1=4x−2−(4+8x).x−3=4x−2−4x−3−8x−2=−4x−3−4x−2=−4x3+−4x2=−4−4xx3=−4x−4x3.
Informasi
Tidak ada komentar:
Posting Komentar
Informasi