Sifat Turunan Pertama dan Aturan Rantai pada Turunan Fungsi Aljabar

Rumus Turunan dan Sifat Turunan Pertama

Untuk:{aRnQckonstantaU=g(x)V=h(x).

Sifat-Sifaty=cy=0y=c.Uy=c.Uy=U±Vy=U±Vy=U.Vy=U.V+U.Vy=UVy=U.VU.VV2Fungsi Aljabary=a.xny=n.a.x(n1)y=a.Uny=n.a.U(n1).UFungsi Trigonometriy=asinUy=(acosU).Uy=acosUy=(asinU).Uy=atanUy=(asec2U).UAturan rantai pada turunan untuky=f(u),jikauntukumerupakan fungsix,maka:y=f(x).uataudydx=dydu.dudx.

CONTOH SOAL.

1.Dengan menggunakan rumus turunanf(x)=Limh0f(x+h)f(x)h,tunjukkan bahwa turunana.f(x)=axnadalahf(x)=n.axn1b.f(x)=u(x)+v(x)adalahf(x)=u(x)+v(x)c.f(x)=u(x).v(x)adalahf(x)=u(x).v(x)+u(x).v(x)d.f(x)=u(x)v(x)adalahf(x)=u(x).v(x)+u(x).v(x)(v(x))2e.f(x)=sinxadalahf(x)=cosxf.f(x)=cosxadalahf(x)=sinxg.f(x)=tanxadalahf(x)=sec2xh.f(x)=cotxadalahf(x)=csc2x.


Bukti1.af(x)=Limh0f(x+h)f(x)hf(x)=Limh0a(x+h)naxnh=Limh0a(xn+(n1)xn1.h+(n2)xn2.h2+(n3)xn3.h3++(nn1)x.hn1+hn)axnh=Limh0a((n1)xn1.h+(n2)xn2.h2+(n3)xn3.h3++(nn1)x.hn1+hn)h=Limh0ah((n1)xn1+(n2)xn2.h+(n3)xn3.h2++(nn1)x.hn2+hn1)h=Limh0a(n1)xn1+a(n2)xn2.h+a(n3)xn3.h2++ahn1=a(n1)xn1+0+0+...+0=a.n!(n1)!.1!xn1=a.n.(n1)!(n1)!xn1=a.n.xn1.

1.bf(x)=Limh0f(x+h)f(x)hf(x)=Limh0(u(x+h)+v(x+h))(u(x)+v(x))h=Limh0(u(x+h)u(x)h+v(x+h)v(x)h)=Limh0u(x+h)u(x)h+Limh0v(x+h)v(x)h=u(x)+v(x).

1.cf(x)=Limh0f(x+h)f(x)hf(x)=Limh0(u(x+h)×v(x+h))(u(x)×v(x))h=Limh0u(x+h)×v(x+h)u(x+h)×v(x)+u(x+h)×v(x)u(x)×v(x)h=Limh0(u(x+h)×v(x+h)v(x)h+v(x)×u(x+h)u(x)h)=Limh0u(x+h)×Limh0v(x+h)v(x)h+Limh0v(x)×Limh0u(x+h)u(x)h=u(x)×v(x)+v(x)×u(x)=u(x)×v(x)+u(x)×v(x).

1.dMisalkanp(x)=u(x)v(x)Sebelumnya telah diketahui dari no. 1. cu(x)=p(x)×v(x)u(x)=p(x)×v(x)+p(x)×v(x)Sekarang kita substitusikan pemisalandi atas, yaitu:p(x)×v(x)=u(x)p(x)×v(x)=u(x)u(x)v(x)×v(x)=u(x)×v(x)u(x)×v(x)v(x)p(x)=u(x)×v(x)u(x)×v(x)v2(x).

1.ef(x)=Limh0f(x+h)f(x)hf(x)=Limh0sin(x+h)sinxh=Limh02cos12(2x+h)sin12hh=Limh02cos12(2x+h).sin12hh=Limh02cos12(2x+h)×12=2cos12(2x+0)×12=cos12(2x)=cosx .

1.ff(x)=Limh0f(x+h)f(x)hf(x)=Limh0cos(x+h)cosxh=Limh02sin12(2x+h)sin12hh=Limh02sin12(2x+h).sin12hh=Limh02sin12(2x+h)×12=2sin12(2x+0)×12=sin12(2x)=sinx.

1.gf(x)=Limh0f(x+h)f(x)hf(x)=Limh0tan(x+h)tanxh=Limh0tanx+tanh1tanx.tanhtanxh=Limh0tanx+tanhtanx+tan2x.tanh1tanx.tanhh=Limh0tanh(1+tan2x)h(1tanx.tanh)=Limh0tanhh×Limh01+tan2x1tanx.tanh=1×1+tan2x10=1+tan2x=sec2x.

2.Tentukanlah turunannyaa.f(x)=x6i.f(x)=(x+1)(x2)q.f(x)=2x3b.f(x)=12x2j.f(x)=(3x)(5x)r.f(x)=12xc.f(x)=2x5k.f(x)=(2x+3)2s.f(x)=13x5d.f(x)=ax3l.f(x)=(x2)3t.f(x)=2x4+12x3e.f(x)=4x4x2+2017m.f(x)=(4x+1)(4x1)u.f(x)=x2+2xf.f(x)=6x3x2n.f(x)=(x1)(x+1)(x+2)v.f(x)=(2x3+1x)2g.f(x)=(x3)2o.f(x)=12x4w.f(x)=x2(1+x)2h.f(x)=(x32)2p.f(x)=x5x.f(x)=2+4xx2y.f(x)=(x+1+1x)(x+11x).

Untuky=f(x)makaabcy=x6y=6x61=6x5y=12x2y=2.12x21=xy=2x5y=5.2x51=10x4defy=ax3y=3.a.x31=3.a.x2y=4x4x2+2017y=4.4x412.x21+0=16x32xy=6x3x2y=01.x112.3x21=16x.

ghy=(x3)2y=2.(x3)21.1=2(x3)y=(x32)2y=2.(x32)21.3x2=6(x32)x2=6x512x2ijy=(x+1)(x2)y=1.(x+2)+(x+1).1=2x+3y=(3x)(5x)y=1.(5x)+(3x).1=2x8 .

klm1m2y=(2x+3)2y=2.(2x+3)21.2=4(2x+3)1=8x+12y=(x2)3y=3(x2)31.1=3(x2)2y=(4x+1)(4x1)cara 1y=4(4x1)+(4x+1).4=16x4+16x+4=32xy=(4x+1)(4x1)cara 2y=16x21y=2.16x210=32x1=32xnopqy=(x1)(x+1)(x+2)=(x21)(x+2)=x3+2x2x2y=3x31+2.2x21x110=3x2+4x1y=12x4y=4.12x41=2x5=2x5y=x5y=5.x51=5x6=5x6y=2x3=2x3y=3.2x31=6x4=6x4.

rstuy=12x=12x12=12x12y=12.12x121=14x32=14x32=14x3y=13x5=13x5y=5.13x51=53x6=53x6y=2x4+12x3=2x4+12x3y=4.2x41+(3).12x31=8x332x4=8x332x4y=x2+2x=12x+2x1y=12x11+(1).2x11=12x02x2=122x2.

vwy=(2x3+1x)2=(2x3+x1)2y=2.(2x3+x1)21.(3.2x31+(1)x11)=2.(2x3+x1)1.(6x2x2)=2(2x3+1x)(6x21x2)=2(12x52x+6x1x3)=24x5+8x2x3y=x2(1+x)2=x2(1+x12)2y=2x.(1+x12)2+x2.2.(1+x12)21.(0+12.x121)=2x(1+x)2+2x2.(1+x).(12x12)=2x(1+x)2+2x2.(12x12).(1+x)=2x(1+x)2+x212.(1+x)=2x(1+x)2+x32(1+x)=2x(1+x)2+(xx+x2).

x1x2y=UVy=U.VU.VV2y=UVy=U.V+U.VU=2+4xU=4V=x2V=2xU=2+4xU=4V=x2V=2xy=2+4xx2y=(4)(x2)(2+4x).(2x)(x2)2=4x24x8x2x4=4x24xx4=4x4x3y=2+4xx2=(2+4x).x2y=(4).x2+(2+4x).2x21=4x2(4+8x).x3=4x24x38x2=4x34x2=4x3+4x2=44xx3=4x4x3.


Tidak ada komentar:

Posting Komentar

Informasi