Contoh 3 Soal dan Pembahasan Materi Lingkaran

 $\begin{array}{ll}\\ 11.&\textrm{Lingkaran}\: \: x^{2}+y^{2}+2ax+2by+c=0\\ &\textrm{menyinggung sumbu Y jika}\: \: c\: =....\\ &\textrm{A}.\quad ab\\ &\textrm{B}.\quad ab^{2}\\ &\textrm{C}.\quad a^{2}b\\ &\textrm{D}.\quad a^{2}\\ &\textrm{E}.\quad \color{red}b^{2}\\\\ &\textbf{Jawab}:\\ &\color{blue}\textbf{Alternatif 1}\\ &\begin{aligned}&x^{2}+y^{2}+2ax+2by+c=0\\ &x=0\Rightarrow 0^{2}+y^{2}+2a.0+2by+c=0\\ &y^{2}+2by+c=0\begin{cases} a & =1 \\ b & =2b \\ c & =c \end{cases}\\ &\textrm{Syarat menyinggung}\: \textrm{adalah}:\\ &D=b^{2}-4ac=0\\ &\Leftrightarrow (2b)^{2}-4.1.c=0\\ &\Leftrightarrow 4c=4b^{2}\\ &\Leftrightarrow c=\color{red}b^{2} \end{aligned} \\\\ &\color{blue}\textbf{Alternatif 2}\\  &\begin{aligned}&x^{2}+y^{2}+2ax+2by+c=0\\ &\Leftrightarrow x^{2}+2ax+a^{2}+y^{2}+2by+b^{2}+c-a^{2}-b^{2}=0\\ &\Leftrightarrow (x+a)^{2}+(y+b)^{2}=a^{2}+b^{2}-c\\ &\textrm{Karena menyinggung sumbu-Y, maka}\: \: R=a \\ &\textrm{Sehingga}\: \: R^{2}=a^{2}+b^{2}-c=a^{2}\\ &\Leftrightarrow b^{2}-c=0\\ &\Leftrightarrow b^{2}=c\\ &\Leftrightarrow c=\color{red}b^{2} \end{aligned}    \end{array}$.

$\begin{array}{ll}\\ 12.&\textrm{Diketahui pusat lingkaran L terletak dikuadran}\\ &\textrm{I dan berada di sepanjang garis}\: \: y=2x.\: \: \textrm{Jika}\\ &\textrm{lingkaran L menyinggung sumbu Y di titik}\\ &(0,6),\: \textrm{maka persamaan lingkaran L adalah}\: ....\\ &\textrm{A}.\quad x^{2}+y^{2}-3x-6y=0\\ &\textrm{B}.\quad x^{2}+y^{2}+6x+12y-108=0\\ &\textrm{C}.\quad x^{2}+y^{2}+12x+6y-72=0\\ &\textrm{D}.\quad x^{2}+y^{2}-12x-6y=0\\ &\textrm{E}.\quad \color{red}x^{2}+y^{2}-6x-12y+36=0\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&(x-a)^{2}+(y-b)^{2}=r^{2},\\ &\textrm{menyinggung titik}\: \: (0,6)\\ &\textrm{berarti pusat lingkaran L juga terletak}\\ &\textrm{pada garis}\: \: y=6.\: \: \textrm{Hal ini menunjukkan bahwa }\\ &\textrm{pusat lingkaran}\: \: \, \: \textrm{L berpusat di}\: \: (x,2x)=(\frac{y}{2},y),\\ &\textrm{dengan}\: \: y=6.\, \: \textrm{Dari informasi di atas, }\\ &\textrm{didapatlah pusat lingkaran berada di titik}\: \: (3,6).\\ &\textrm{Sehingga persamaan lingkarannya adalah}:\\ &(x-3)^{2}+(y-6)^{2}=3^{2}\: \: \textrm{ingat}\: \: r=\textrm{absis}\: \: x=3\\ &\Leftrightarrow (x-3)^{2}+(y-6)^{2}=x^{2}-6x+9+y^{2}+12x+36=9\\ &\Leftrightarrow \, \color{red}x^{2}+y^{2}-6x+12y+36=0\\ &\color{purle}\textrm{Berikut ilustrasi gambarnya} \end{aligned} \end{array}$.


$\begin{array}{ll}\\ 13.&\textrm{Persamaan garis singgung lingkaran}\\ &x^{2}+y^{2}+8x-3y-24=0,\: \: \textrm{di titik}\\ & (2,4)\: \: \textrm{adalah}\: ....\\ &\textrm{A}.\quad 12x-5y-44=0\\ &\textrm{B}.\quad \color{red}12x+5y-44=0\\ &\textrm{C}.\quad 12x-y-50=0\\ &\textrm{D}.\quad 12x+y-50=0\\ &\textrm{E}.\quad 12x+y+50=0\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&x^{2}+y^{2}+8x-3y-24\\ &\Leftrightarrow x^{2}+8x+16+y^{2}-3y+\displaystyle \frac{9}{4}-24=16+\frac{9}{4}\\ &\Leftrightarrow \: (x+4)^{2}+(y-\frac{3}{2})^{2}=16+\frac{9}{4}+24=42\frac{1}{4}\\ &\textrm{Persamaan garis singgung lingkar}\textrm{an lingkaran }\\ &\textrm{di titik}\: \: (x_{1},y_{1})\: \: \textrm{adalah}:\\ &(x_{1}+4)(x+4)+(y_{1}-\frac{3}{2})(y-\frac{3}{2})=42\frac{1}{4},\\ &\textrm{untuk}\: \: (x_{1},y_{1})=(2,4),\: \textrm{maka}\\ &(2+4)(x+4)+(4-\frac{3}{2})(y-\frac{3}{2})=\frac{169}{4}\\ &\Leftrightarrow 6(x+4)+\frac{5}{2}(y-\frac{3}{2})=\frac{169}{4}\\ &\Leftrightarrow 24(x+4)+5(2y-3)=169\\ &\Leftrightarrow 24x+96+10y-15=169\\ &\Leftrightarrow 24x+10y=169-96+15=88\\ &\Leftrightarrow \color{red}12x+5y-44=0\\ &\color{purple}\textrm{Berikut ilustrasi gambarnya} \end{aligned}  \end{array}$.

$\begin{array}{ll}\\ 14.&\textrm{Sebuah garis singgung}\: \: g\: \: \textrm{menyinggung }\\ &\textrm{lingkaran yang berpusat di}\: \: (-2,5)\: \: \textrm{dan}\\ &\textrm{berjari-jari}\: \: 2\sqrt{10}\: \: \textrm{di titk}\: \: (4,3),\: \textrm{maka }\\ &\textrm{persamaan garis singgung}\: \: g\: \: \textrm{adalah}\: .... \\ &\textrm{A}.\quad y=3x+9\\ &\textrm{B}.\quad \color{red}y=3x-9\\ &\textrm{C}.\quad y=-3x+9\\ &\textrm{D}.\quad y=-3x-9\\ &\textrm{E}.\quad y=3x+21\\\\ &\textbf{Jawab}:\\  &\begin{aligned}&(x-a)^{2}+(y-b)^{2}=r^{2}\\ &\begin{cases} \textrm{Pusat} & =(-2,5) \\ \textrm{r} & =2\sqrt{10} \end{cases} \\ &\textrm{maka persamaan lingkarannya}:\\ &(x+2)^{2}+(y-5)^{2}=(2\sqrt{10})^{2}\\ &\Leftrightarrow (x_{1}+2)(x+2)+(y_{1}-5)(y-5)=40,\\ &\textrm{menyingung garis}\: \: g\: \: \textrm{di}\: (4,3)\\ &(4+2)(x+2)+(3-5)(y-5)=40\\ &\Leftrightarrow 6x+12-2y+10=40\\ &\Leftrightarrow 6x-2y=40-12-10\\ &\Leftrightarrow 3x-y=9\\ &\Leftrightarrow -y=-3x+9\\ &\Leftrightarrow \color{red}y=3x-9\\ &\color{purple}\textrm{Berikut ilustrasi gambarnya} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 15.&\textrm{Suatu lingkaran dengan titik pusatnya terletak }\\ &\textrm{pada kurva}\: \: y=\sqrt{x}\: \: \textrm{dan melalui titik asal}\: \:  O(0,0).\\ & \textrm{Jika diketahui absis titik pusat lingkaran tersebut }\\ &\textrm{adalah}\: \: a,\: \: \textrm{maka persamaan garis singgung }\\ &\textrm{lingkaran yang melalui titik}\: \: O\: \: \textrm{tersebut adalah}\: ....\\ &\textrm{A}.\quad y=-x\\ &\textrm{B}.\quad \color{red}y=-x\sqrt{a}\\ &\textrm{C}.\quad y=-ax\\ &\textrm{D}.\quad y=-2x\sqrt{2}\\ &\textrm{E}.\quad y=-2ax\\\\ &\textbf{Jawab}:\\  &\begin{array}{|l|c|l|}\hline \begin{aligned}&\textrm{Pusat}\\ &\textrm{lingkaran}\\ &\\ &\\ & \end{aligned}&\begin{aligned}&\textrm{Gradien garis singgung}\\ &\textrm{yang tegak lurus dengan }\\ &\textrm{garis yang melalui titik}\\ &\textrm{pusat lingkaran yang }\\ &\textrm{bergradien}\: \: m_{L} \end{aligned}&\begin{aligned}&\textrm{Persamaan garis }\\ &\textrm{singgung yang }\\ &\textrm{melalui titik asal}\\ &O(0,0)\\ & \end{aligned}\\\hline \begin{aligned}&(a,b)\\ &=\left ( a,\sqrt{a} \right )\\ &\\ &\\ & \end{aligned}&\color{blue}\begin{aligned}&m.m_{1}=-1\\ &m.\frac{y}{x}=-1\\ &m=-\frac{x}{y}=-\displaystyle \frac{a}{\sqrt{a}}\\ &\: \: \: \, =-\sqrt{a} \end{aligned}&\begin{aligned}y&=mx,\\ & \textrm{karena melalui}\\ &\textrm{titik asal}\\ y&=-\sqrt{a}x,\\ y&=\color{red}-x\sqrt{a} \end{aligned}\\\hline \end{array}  \end{array}$.


Tidak ada komentar:

Posting Komentar

Informasi