Sebelumnya silahkan lihat di sini
$\color{blue}\textrm{A. Operasi Vektor Dalam Ruang}$
Operasi vektor pada dimensi tiga kurang lebih sama dengan operasi pada vektor berdimensi dua.
$\color{blue}\textrm{A. Penjumlahan dan Pengurangan}$.
$\begin{aligned}\textrm{Jika}\: & \textrm{diketahui sebagai misal}\\ \bar{u}&=a\bar{i}+b\bar{j}+c\bar{k}\: \: \: \color{red}\textrm{dan}\\ \bar{v}&=p\bar{i}+q\bar{j}+r\bar{k}\\ \textrm{mak}&\textrm{a}\\ \textbf{Pen}&\textbf{jumlahan dua vektor di atas adalah}\\ \bar{u}+\bar{v}&=(a+p)\bar{i}+(b+q)\bar{j}+(c+r)\bar{k}\\ \textbf{dem}&\textbf{ikian juga untuk pengurangan}\\ \bar{u}-\bar{v}&=(a-p)\bar{i}+(b-q)\bar{j}+(c-r)\bar{k}\\ \end{aligned}$.
$\LARGE\colorbox{yellow}{CONTOH SOAL}$.
$\begin{array}{ll}\\ 1.&\textrm{Jika diketahui}\: \: \bar{a}=\begin{pmatrix} 1\\ 3\\ 7 \end{pmatrix}\: \: \textrm{dan}\: \: \bar{b}=\begin{pmatrix} 8\\ -2\\ 0 \end{pmatrix}\\ &\textrm{Tentukanlah hasil dari}\\ &\textrm{a}.\quad \bar{a}+\bar{b}\\ &\textrm{b}.\quad \bar{a}-\bar{b}\\\\ &\textbf{Jawab}\\ &\begin{aligned}&\textrm{Diketahui bahwa}\\ &\bar{a}=\begin{pmatrix} 1\\ 3\\ 7 \end{pmatrix}\: \: \textrm{dan}\: \: \bar{b}=\begin{pmatrix} 8\\ -2\\ 0 \end{pmatrix},\\ &\textrm{maka}\\ &\bar{a}+\bar{b}=\begin{pmatrix} 1\\ 3\\ 7 \end{pmatrix}+\begin{pmatrix} 8\\ -2\\ 0 \end{pmatrix}\\ &\qquad =\begin{pmatrix} 1+8\\ 3+(-2)\\ 7+0 \end{pmatrix}=\begin{pmatrix} 9\\ 1\\ 7 \end{pmatrix}\\ &\textrm{Dan untuk}\: \: \bar{a}-\bar{b}\: \: \textrm{adalah}:\\ &\bar{a}-\bar{b}=\begin{pmatrix} 1\\ 3\\ 7 \end{pmatrix}-\begin{pmatrix} 8\\ -2\\ 0 \end{pmatrix}\\ &\qquad =\begin{pmatrix} 1-8\\ 3-(-2)\\ 7-0 \end{pmatrix}=\begin{pmatrix} -7\\ 5\\ 7 \end{pmatrix} \end{aligned} \end{array}$.
$\color{blue}\textrm{B. 1. Perkalian Skalar dengan Vektor}$.
Misalkan suatu skalar $m$ dan suatu vektor $\bar{u}=a\bar{i}+b\bar{j}+c\bar{k}$, maka perkalian $m$ dengan vektor $\bar{u}$ tersebut adalah $\bar{u}=ma\bar{i}+mb\bar{j}+mc\bar{k}$.
$\LARGE\colorbox{yellow}{CONTOH SOAL}$.
$\begin{array}{ll} 2.&\textrm{Jika}\: \: \bar{a}=\begin{pmatrix} 2022\\ 2021\\ 2020 \end{pmatrix},\: \: \textrm{tentukanlah nilai}\\ &\textrm{dari}\: \: 2\bar{a}\: \: \: \textrm{dan}\: \: -3\bar{a}\\\\ &\textbf{Jawab}\\ &\begin{aligned}2\bar{a}&=2\begin{pmatrix} 2022\\ 2021\\ 2020 \end{pmatrix}=\begin{pmatrix} 4044\\ 4042\\ 4040 \end{pmatrix},\: \: \textrm{dan}\\ -3\bar{a}&=-3\begin{pmatrix} 2022\\ 2021\\ 2020 \end{pmatrix}=\begin{pmatrix} -6066\\ -6063\\ -6060 \end{pmatrix} \end{aligned} \end{array}$
$\color{blue}\textrm{F. 2. Perkalian Skalar Dua Vektor}$.
Hasil dari perkalian skalar dua vektor $\bar{a}$ dan $\bar{b}$ adalah : $\bar{a}\: \: \bullet\: \: \bar{b}$.
Dengan
$\bar{a}\: \: \bullet\: \: \bar{b}=\left | \bar{a} \right |\left | \bar{b} \right |\cos \theta$. sehingga
$\begin{aligned}&\textrm{Tanda dari hasil skalar ini adalah}\\ &\begin{array}{|l|l|l|}\hline \textbf{Besar sudut}\: \: \: \theta &\textbf{Tanda}&\textrm{Bentuk}\\\hline 0^{\circ}\leq \theta < 90^{\circ}&\textrm{Positif}&\color{red}\textrm{Lancip}\\\hline \theta =90^{\circ}&\textrm{Nol}&\textrm{Siku-siku}\\\hline 90^{\circ}< \theta \leq 180^{\circ}&\textrm{Negatif}&\color{blue}\textrm{Tumpul}\\\hline \end{array}\\ &\textrm{Untuk}\: \: \theta \: \: \textrm{berupa sudut istimewa}:\\ &\begin{array}{|c|c|c|c|c|c|c|}\hline \theta &0^{\circ}&30^{\circ}&45^{\circ}&60^{\circ}&90^{\circ}&180^{\circ}\\\hline \cos \theta &1&\displaystyle \frac{1}{2}\sqrt{3}&\displaystyle \frac{1}{2}\sqrt{2}&\displaystyle \frac{1}{2}&0&-1\\\hline \end{array} \end{aligned}$
Adapun secara rumus untuk menentukan besar sudutnya adalah:
$\cos \theta =\displaystyle \frac{\bar{a}\: \: \bullet\: \: \bar{b} }{\left | \bar{a} \right |\left | \bar{b} \right |}$.
Sebagai ilustrasinya perhatikanlah gambar berikut
Selain hasil di atas ada cara lain menyelesaikan perkalian skalar dua vektor, yaitu:
$\begin{aligned}\textrm{Jika}\: & \textrm{diketahui sebagai misal}\\ \bar{u}&=a\bar{i}+b\bar{j}+c\bar{k}\: \: \: \color{red}\textrm{dan}\\ \bar{v}&=p\bar{i}+q\bar{j}+r\bar{k}\\ \textrm{mak}&\textrm{a}\\ \textbf{Per}&\textbf{kalian skalar dua vektor adalah}:\\ \bar{u}\: \bullet \: &\bar{v}=\left ( a\bar{i}+b\bar{j}+c\bar{k} \right )\left ( p\bar{i}+q\bar{j}+r\bar{k} \right )\\ &\: \: =ap.\bar{i}\: \bullet \bar{i}+aq.\bar{i}\: \bullet \: \bar{j}+ar.\bar{i}\: \bullet \: \bar{k}\\ &\: \: \: \: \: \: \: +bp.\bar{j}\: \bullet \: \bar{i}+bq.\bar{j}\: \bullet \: \bar{j}+br.\bar{j}\: \bullet \: \bar{k}\\ &\: \: \: \: \: \: \: +cp.\bar{k}\: \bullet \: \bar{i}+cq.\bar{k}\: \bullet \: \bar{j}+cr.\bar{k}\: \bullet \: \bar{k}\\ &\: \: =ap+0+0+0+bq+0+0+0+cr\\ &\: \: =\color{red}a p+b q+c r \end{aligned}$
$\begin{aligned}&\textrm{Sebagai penjelasannya adalah}:\\ &\color{red}\triangleright \quad \color{black}\bar{i}\: \: \bullet \: \: \bar{i}=\left | \bar{i} \right |\left | \bar{i} \right |\cos 0^{\circ}=1.1.1=1\\ &\color{red}\triangleright \quad \color{black}\bar{i}\: \: \bullet \: \: \bar{j}=\left | \bar{i} \right |\left | \bar{j} \right |\cos 90^{\circ}=1.1.0=0\\ &\color{red}\triangleright \quad \color{black}\bar{i}\: \: \bullet \: \: \bar{k}=\left | \bar{i} \right |\left | \bar{k} \right |\cos 90^{\circ}=1.1.0=0\\ &\color{red}\triangleright \quad \color{black}\bar{j}\: \: \bullet \: \: \bar{i}=\bar{i}\: \: \bullet \: \: \bar{j}=0\\ &\color{red}\triangleright \quad \color{black}\bar{j}\: \: \bullet \: \: \bar{j}=\left | \bar{j} \right |\left | \bar{j} \right |\cos 0^{\circ}=1.1.1=1\\ &\color{red}\triangleright \quad \color{black}\bar{j}\: \: \bullet \: \: \bar{k}=\left | \bar{j} \right |\left | \bar{k} \right |\cos 90^{\circ}=1.1.0=0\\ &\color{red}\triangleright \quad \color{black}\bar{k}\: \: \bullet \: \: \bar{i}=\bar{i}\: \: \bullet \: \: \bar{k}=0\\ &\color{red}\triangleright \quad \color{black}\bar{k}\: \: \bullet \: \: \bar{j}=\bar{j}\: \: \bullet \: \: \bar{k}=0\\ &\color{red}\triangleright \quad \color{black}\bar{k}\: \: \bullet \: \: \bar{k}=\left | \bar{k} \right |\left | \bar{k} \right |\cos 90^{\circ}=1.1.1=1 \end{aligned}$
$\begin{aligned}&\textrm{Atau jika ditabelkan nilainya}\\ &\begin{array}{|c|c|c|c|}\hline \bar{u}\: \bullet \: \bar{v}&p\bar{i}&q\bar{j}&r\bar{k}\\\hline a\bar{k}&ap&0&0\\ b\bar{j}&0&bq&0\\ c\bar{k}&0&0&cr\\\hline \end{array} \end{aligned}$
$\LARGE\colorbox{yellow}{CONTOH SOAL}$.
$\begin{array}{ll} 3.&\textrm{Jika}\: \: \vec{a}=\begin{pmatrix} 1\\ 2\\ 4 \end{pmatrix},\: \: \textrm{dan}\: \: \vec{b}=\begin{pmatrix} 5\\ 4\\ 0 \end{pmatrix}\\\ & \textrm{tentukanlah nilai}\: \: \textrm{dari}\: \: \vec{a}\bullet \vec{b}\\\\ &\textbf{Jawab}\\ &\begin{aligned}\vec{a}\bullet \vec{b}&=1.5+2.4+4.0=5+8+0=13 \end{aligned} \end{array}$
$\begin{array}{ll} 4.&\textrm{Jika diketahui}\: \: \vec{a}=\vec{i}-2\vec{j}+3\vec{k},\\ & \textrm{dan}\: \: \vec{b}=3\vec{i}-4\vec{j}+m\vec{k}\: \: \textrm{serta}\\\ & \textrm{nilai}\: \: \vec{a}\bullet \vec{b}=-4,\: \: \textrm{maka tentukan}\\ &\textrm{nilai}\: \: m\\\\ &\textbf{Jawab}\\ &\textrm{Diketahui bahwa}\\ &\color{red}\triangleright \quad \color{black}\vec{a}=\vec{i}-2\vec{j}+3\vec{k}=\begin{pmatrix} 1\\ -2\\ 3 \end{pmatrix},\: \: \textrm{dan}\\ &\color{red}\triangleright \quad \color{black}\vec{b}=3\vec{i}-4\vec{j}+m\vec{k}=\begin{pmatrix} 3\\ -4\\ m \end{pmatrix}\\ &\begin{aligned}\vec{a}\bullet \vec{b}&=1.3+3.(-4)+3.m\\ -4&=3+8+3m\\ -3m&=11+4\\ m&=-\displaystyle \frac{15}{3}\\ &=\color{blue}-5 \end{aligned} \end{array}$
$\begin{array}{ll} 5.&\textrm{Diketahui}\: \: \left |\vec{a} \right |=10,\: \left | \vec{b} \right |=6.\\ & \textrm{Jika}\: \: \vec{a}\: \: \textrm{dan}\: \: \vec{b}\: \: \textrm{membentuk sudut}\\ &60^{\circ}.\: \textrm{Tentukanlah nilai}\: \: \vec{a}\bullet \vec{b}\\\\ &\textbf{Jawab}\\ &\begin{aligned}\vec{a}\bullet \vec{b}&=\left | \vec{a} \right |\left | \vec{b} \right |\cos \theta \\ &=10.6.\cos 60^{\circ}\\ &=60.\left ( \displaystyle \frac{1}{2} \right )\\ &=\color{blue}30\\ \textrm{Jadi}&\: \textrm{hasil kali skalarnya adalah 30} \end{aligned} \end{array}$.
Tidak ada komentar:
Posting Komentar
Informasi