Tampilkan postingan dengan label Practice Question 10 Preparation for PAS Odd Mathematics Compulsory Class XI. Tampilkan semua postingan
Tampilkan postingan dengan label Practice Question 10 Preparation for PAS Odd Mathematics Compulsory Class XI. Tampilkan semua postingan

Latihan Soal 10 Persiapan PAS Gasal Matematika Wajib Kelas XI

 $\begin{array}{ll}\\ 91.&\textrm{Titik A(4,-4) dicerminkan terhadap}\\ &\textrm{garis}\: \: y=x\tan 15^{\circ}\: \: \textrm{menghasilkan}\\ &\textrm{bayangan}\: \: A'(a,b)\: \: \textrm{adalah}\, ...\\ &\begin{array}{lll}\\ \textrm{a}.\quad \sqrt{3}&&\textrm{d}.\quad \color{red}4\sqrt{3}\\ \textrm{b}.\quad 2\sqrt{3}&\textrm{c}.\quad 3\sqrt{3}&\textrm{e}.\quad 6\sqrt{3} \end{array}\\\\ &\textbf{Jawab}:\quad \textbf{d}\\ &\begin{aligned}\begin{pmatrix} a\\ b \end{pmatrix}&=\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}\\ &=\begin{pmatrix} \cos 2.15^{\circ}& \sin 2.15^{\circ}\\ \sin 2.15^{\circ} & -\cos 2.15^{\circ} \end{pmatrix}\begin{pmatrix} 4\\ -4 \end{pmatrix}\\ &=\begin{pmatrix} \cos 30^{\circ}&\sin 30^{\circ}\\ \sin 30^{\circ}&-\cos 30^{\circ} \end{pmatrix}\begin{pmatrix} 4\\ -4 \end{pmatrix}\\ &=\begin{pmatrix} \displaystyle \frac{1}{2}\sqrt{3} & \displaystyle \frac{1}{2}\\ \displaystyle \frac{1}{2} & -\displaystyle \frac{1}{2}\sqrt{3} \end{pmatrix}\begin{pmatrix} 4\\ -4 \end{pmatrix}\\ &=\begin{pmatrix} 2\sqrt{3}-2\\ 2+2\sqrt{3} \end{pmatrix}\\ &\begin{cases} a &=2\sqrt{3}-2 \\ b &=2+2\sqrt{3} \end{cases}\\ \textrm{mak}&\textrm{a nilai dari}\\ a+b&=\left ( 2\sqrt{3}-2+2+2\sqrt{3} \right )\\ &=4\sqrt{3} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 92.&\textrm{Lingkaran}\: \: x^{2}+y^{2}-5x+8y+7=0\\ & \textrm{ditranslasikan oleh}\: \: T=\begin{pmatrix} m\\ n \end{pmatrix}\: \: \textrm{menghasilkan}\\ &\textrm{bayangan}\: \: x^{2}+y^{2}-9x+2y+6=0.\\ & \textrm{Nilai}\: \: m+n=\, ...\\ &\begin{array}{lll}\\ \textrm{a}.\quad 2&&\textrm{d}.\quad \color{red}5\\ \textrm{b}.\quad 3&\qquad\textrm{c}.\quad 4\qquad&\textrm{e}.\quad 6 \end{array}\\\\ &\textbf{Jawab}:\quad \textbf{d}\\ &\begin{aligned}\textrm{Dik}&\textrm{etahui sebuah lingkaran dengan persamaan}:\\ & \color{blue}x^{2}+y^{2}-5x+8y+7=0\\ \textrm{kar}&\textrm{ena akibat translasi, maka}\\ &\begin{cases} x & =x'-m \\ y & =y'-n \end{cases}\\ &x^{2}+y^{2}-5x+8y+7=0\\ \textrm{seh}&\textrm{ingga}\\ &\Leftrightarrow \color{purple}(x'-m)^{2}+(y'-n)^{2}-5(x'-m)+8(y'-n)+7=0\\ &\Leftrightarrow \color{purple}x'^{2}+y'^{2}-2mx'-2ny'+m^{2}+n^{2}-5x'+5m+8y'-8n+7=0\\ &\Leftrightarrow \color{purple}x'^{2}+y'^{2}-(2m+5)x'+(8-2n)y'+m^{2}+n^{2}+5m-8n+7=0\\ &\qquad \equiv \: \color{purple}x'^{2}+y'^{2}-9x'+2y'+6=0\qquad (\color{black}\textbf{akhir bayangan})\\ &\begin{cases} 9 &=2m+5 \Rightarrow m=2\\ 2 & =8-2n \: \Rightarrow \, \: n=3 \end{cases}\\ \textrm{Jad}&\textrm{i , nilai}\: \: m+n=2+3=5\end{aligned} \end{array}$.

$\begin{array}{ll}\\ 93.&\textrm{Jika titik A(-2,1) dicerminkan terhadap garis}\\ & y=-\displaystyle \frac{1}{3}x\sqrt{3}\: ,\: \textrm{maka bayangan dari}\\ &\textrm{titik \textit{A} tersebut adalah}\, ....\\ &\begin{array}{lll}\\ \textrm{a}.\quad A'\left ( 1-\displaystyle \frac{1}{2}\sqrt{3},-\displaystyle \frac{1}{2}+\sqrt{3} \right )&&\\ \textrm{b}.\quad \color{red}A'\left ( -1-\displaystyle \frac{1}{2}\sqrt{3},-\displaystyle \frac{1}{2}+\sqrt{3} \right )&\\ \textrm{c}.\quad A'\left (-1-\displaystyle \frac{1}{2}\sqrt{3},\displaystyle \frac{1}{2}-\sqrt{3} \right )&\\ \textrm{d}.\quad A'\left ( 1-\displaystyle \frac{1}{2}\sqrt{3},\displaystyle \frac{1}{2}-\sqrt{3} \right )\\ \textrm{e}.\quad A'\left ( -1+\displaystyle \frac{1}{2}\sqrt{3},-\displaystyle \frac{1}{2}+\sqrt{3} \right ) \end{array}\\\\ &\textbf{Jawab}:\quad \textbf{b}\\ &\begin{aligned}\textrm{Diketahui}&\: \textrm{bahwa}:\\ y&=-\displaystyle \frac{1}{3}x\sqrt{3}=\left ( -\displaystyle \frac{1}{3}\sqrt{3} \right )x\\ &=\left (-\tan 30^{\circ} \right )x=\tan \left ( 180^{\circ}-30^{\circ} \right )x\\ &=\tan 150^{\circ}.x\\ \textrm{maka}\: \: \theta &=150^{\circ}\quad \Rightarrow \quad 2\theta =300^{\circ}\\ \begin{pmatrix} x'\\ y' \end{pmatrix}&=\color{purple}\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}\\ &=\color{purple}\begin{pmatrix} \cos 300^{\circ} & \sin 300^{\circ} \\ \sin 300^{\circ} & -\cos 300^{\circ} \end{pmatrix}\begin{pmatrix} -2\\ 1 \end{pmatrix}\\ &=\color{purple}\begin{pmatrix} \displaystyle \frac{1}{2} & -\displaystyle \frac{1}{2}\sqrt{3}\\ -\displaystyle \frac{1}{2}\sqrt{3} & -\displaystyle \frac{1}{2} \end{pmatrix}\begin{pmatrix} -2\\ 1 \end{pmatrix}\\ &=\begin{pmatrix} -1-\displaystyle \frac{1}{2}\sqrt{3}\\ \sqrt{3}-\displaystyle \frac{1}{2} \end{pmatrix} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 94.&\textrm{Bayangan titik A(2,4) dicerminkan }\\ &\textrm{terhadap garis}\: \: y-x=0\: \: \textrm{dilanjutkan}\\ &\textrm{ke garis}\: \: x\sqrt{3}-3y=0\: \: \textrm{adalah}\, ...\\ &\begin{array}{lll}\\ \textrm{a}.\quad \color{red}A'\left ( 2+\sqrt{3},-1+2\sqrt{3} \right )&&\\ \textrm{b}.\quad A'\left ( 2+\sqrt{3},1-2\sqrt{3} \right )&\\ \textrm{c}.\quad A'\left ( 1-\sqrt{3},-2+\sqrt{3} \right )&\\ \textrm{d}.\quad A'\left ( -2+\sqrt{3},1+2\sqrt{3} \right )\\ \textrm{e}.\quad A'\left ( 2-\sqrt{3},1-2\sqrt{3} \right ) \end{array}\\\\ &\textbf{Jawab}:\quad \textbf{a}\\ &\begin{aligned}\textrm{Dike}&\textrm{tahui bahwa}:\\ &\begin{cases} x\sqrt{3}-3y=0 & \Leftrightarrow y=\displaystyle \frac{1}{3}\sqrt{3}x\\ &\Leftrightarrow y=\tan 30^{\circ}.x\\\\ x-y=0 & \Leftrightarrow y=x \end{cases}\\\\ \begin{pmatrix} x'\\ y' \end{pmatrix}&=\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}\\ &=\begin{pmatrix} \cos 2.30^{\circ} & \sin 2.30^{\circ} \\ \sin 2.30^{\circ} & -\cos 2.30^{\circ} \end{pmatrix}\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}\\ &=\begin{pmatrix} \displaystyle \frac{1}{2} & \displaystyle \frac{1}{2}\sqrt{3}\\ \displaystyle \frac{1}{2}\sqrt{3} & -\displaystyle \frac{1}{2} \end{pmatrix}\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}\begin{pmatrix} 2\\ 4 \end{pmatrix}\\ &=\begin{pmatrix} \sqrt{3}+2\\ -1+2\sqrt{3} \end{pmatrix} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 95.&\textrm{Jika}\: \: T_{1}=\begin{pmatrix} 1 & 2\\ 1 & 1 \end{pmatrix}\: \: \textrm{dan}\: \: T_{2}=\begin{pmatrix} -2 & 5\\ -1 & 3 \end{pmatrix}\\ &\textrm{maka bayangan garis}\: \: x+y+1=0\\ &\textrm{oleh}\: \: T_{2}\circ T_{1}\: \: \textrm{adalah}\, ...\\ &\begin{array}{lll}\\ \textrm{a}.\quad \color{red}x-2y-1=0&&\\ \textrm{b}.\quad x+2y-1=0&\\ \textrm{c}.\quad x+2y+1=0&\\ \textrm{d}.\quad x-2y+1=0\\ \textrm{e}.\quad x+y-1=0 \end{array}\\\\ &\textbf{Jawab}:\quad \textbf{a}\\ &\begin{aligned}\textrm{Dike}&\textrm{tahui bahwa}:\\ \begin{pmatrix} x'\\ y' \end{pmatrix}&=T_{2}\circ T_{1}\begin{pmatrix} x\\ y \end{pmatrix}\\ &=\begin{pmatrix} -2 & 5\\ -1 & 3 \end{pmatrix}\begin{pmatrix} 1 & 2\\ 1 & 1 \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}\\ &=\begin{pmatrix} -2+5 & -4+5\\ -1+3 & -2+3 \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}\\ &=\begin{pmatrix} 3 & 1\\ 2 & 1 \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}\\ &=\begin{pmatrix} 3x+y\\ 2x+y \end{pmatrix}\\ \textrm{Dipe}&\textrm{roleh}\\ &\begin{array}{lllllllll}\\ \quad x'&=3x+y\\ \quad y'&=2x+y\qquad\quad-\\\hline x'-y'&=x\\ \Leftrightarrow \quad x&=\color{red}x'-y'\qquad\color{black}....(1)\\ \color{blue}\textrm{maka}\\ \qquad y&=x'-3x\\ &=x'-3(x'-y')\\ &=\color{red}3y'-2x'\quad \color{black}....(2) \end{array}\\ \textrm{Sehin}&\textrm{gga}\\ x+y&+1=0\\ x'-&y'+3y'-2x'+1=0\\ -x'+&2y'+1=0\\ x'-&2y'-1=0\\ \textrm{maka}&\: \textrm{bayangan garisnya}\\ x-2&y-1=0 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 96.&\textrm{Garis}\: \: 2x+y+4=0\: \: \textrm{ditranslasikan}\\ &\textrm{oleh}\: \: \begin{pmatrix} -2\\ 5 \end{pmatrix}\: \: \textrm{dilanjutkan transformasi} \\ &\textrm{oleh}\: \: \begin{pmatrix} 1 & 2\\ 0 & 1 \end{pmatrix}\: \: \textrm{persamaan bayangannya}\\ &\textrm{adalah}\, ...\\ &\begin{array}{lll}\\ \textrm{a}.\quad 2x+y+3=0&&\\ \textrm{b}.\quad \color{red}2x-3y+3=0&\\ \textrm{c}.\quad 2x+3y+3=0&\\ \textrm{d}.\quad 3x+2y+3=0\\ \textrm{e}.\quad 3x-2y+3=0 \end{array}\\\\ &\textbf{Jawab}:\quad \textbf{b}\\ &\begin{aligned}\textrm{Diket}&\textrm{ahui bahwa}:\\ \begin{pmatrix} x'\\ y' \end{pmatrix}\: &=\begin{pmatrix} x\\ y \end{pmatrix}+\begin{pmatrix} -2\\ 5 \end{pmatrix}=\begin{pmatrix} x-2\\ y+5 \end{pmatrix}\\ \begin{pmatrix} x''\\ y'' \end{pmatrix}&=\begin{pmatrix} 1 & 2\\ 0 & 1 \end{pmatrix}\begin{pmatrix} x'\\ y' \end{pmatrix}\\ &=\begin{pmatrix} 1 & 2\\ 0 & 1 \end{pmatrix}\begin{pmatrix} x-2\\ y+5 \end{pmatrix}\\ &=\begin{pmatrix} x-2+2y+10\\ y+5 \end{pmatrix}\\ &=\begin{pmatrix} x+2y+8\\ y+5 \end{pmatrix}\\ \textrm{Diper}&\textrm{oleh}\\ &\begin{array}{lllllllll}\\ \quad x''&=x+2y+8\\ \: \: \: 2y''&=2y+10\qquad\quad-\\\hline x''-2y''&=x-2\\ \Leftrightarrow \quad x&=\color{red}x''-2y''+2\: \color{black}....(1)\\ \color{blue}\textrm{maka}\\ \qquad y&=\color{red}y''-5\quad \color{black}\qquad....(2) \end{array}\\ \textrm{sehin}&\textrm{gga}\\ 2x+&y+4=0\\ 2(x''&-2y''+2)+(y''-5)+4=0\\ 2x''-&3y''+3=0\\ \textrm{maka}&\: \textrm{bayangan garisnya}\\ 2x-&3y+3=0 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 97.&\textrm{Diketahui}\: \: M\: \: \textrm{adalah pencerminan terhadap}\\ &\textrm{garis}\: \: y=-x\: \: \textrm{dan}\: \: T\: \: \textrm{adalah transformasi} \\ &\textrm{yang dinyatakan oleh matriks}\: \: \begin{pmatrix} 2 & 3\\ 0 & -1 \end{pmatrix}\\ &\textrm{Koordinat bayangan titik}\: \: A(2,-8)\: \: \textrm{oleh}\\ &\textrm{transformasi}\: \: M\: \: \textrm{dilanjutkan oleh}\: \: T\: \: \textrm{adalah}\, ...\\ &\begin{array}{lll}\\ \textrm{a}.\quad (-10,2)&&\\ \textrm{b}.\quad (-2,-10)&\\ \textrm{c}.\quad \color{red}(10,2)&\\ \textrm{d}.\quad (-10,-2)\\ \textrm{e}.\quad (2,10) \end{array}\\\\ &\textbf{Jawab}:\quad \textbf{c}\\ &\begin{aligned}\textrm{Dike}&\textrm{tahui bahwa}:\\ \begin{pmatrix} x'\\ y' \end{pmatrix} &=\color{purple}T\circ M\begin{pmatrix} x\\ y \end{pmatrix}\\ &=\begin{pmatrix} 2 & 3\\ 0 & -1 \end{pmatrix}\begin{pmatrix} 0 & -1\\ -1 & 0 \end{pmatrix}\begin{pmatrix} 2\\ -8 \end{pmatrix}\\ &=\begin{pmatrix} 0-3 & -2+0\\ 0+1 & 0+0 \end{pmatrix}\begin{pmatrix} 2\\ -8 \end{pmatrix}\\ &=\begin{pmatrix} -3 & -2\\ 1 & 0 \end{pmatrix}\begin{pmatrix} 2\\ -8 \end{pmatrix}\\ &=\begin{pmatrix} -6+16\\ 2+0 \end{pmatrix}\\ &=\color{red}\begin{pmatrix} 10\\ 2 \end{pmatrix} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 98.&\textrm{Jika}\: \: W\: \: \textrm{adalah transformasi oleh}\\ &\textrm{matriks}\: \: \begin{pmatrix} 1 & 0\\ 3 & 1 \end{pmatrix},\: \: \textrm{maka titik mula}\\ &\textrm{dari}\: \: W'(-2,5)\: \: \textrm{adalah}\, ...\\ &\begin{array}{lll}\\ \textrm{a}.\quad (-11,-2)&&\\ \textrm{b}.\quad (11,-2)&\\ \textrm{c}.\quad \color{red}(-2,11)&\\ \textrm{d}.\quad (2,11)\\ \textrm{e}.\quad (12,11) \end{array}\\\\ &\textbf{Jawab}:\quad \textbf{c}\\ &\begin{aligned}\textrm{Dimi}&\textrm{salkan}:\\ A&=\begin{pmatrix} -2\\ 5 \end{pmatrix},\: \: \textrm{dan}\\ W&=\begin{pmatrix} 1 & 0\\ 3 & 1 \end{pmatrix},\: \: \textrm{serta}\: \: X=\begin{pmatrix} x\\ y \end{pmatrix}\\ \textrm{mak}&\textrm{a}\\ &\begin{array}{|c|}\hline \color{red}\begin{aligned}A&=BX\\ B^{-1}A&=B^{-1}BX\\ B^{-1}A&=I.X\\ B^{-1}A&=X\\ X&=B^{-1}A \end{aligned}\\\hline \end{array}\\ \begin{pmatrix} x\\ y \end{pmatrix}&=\displaystyle \frac{1}{\begin{vmatrix} 1 &0 \\ 3 & 1 \end{vmatrix}}\begin{pmatrix} 1 & 0\\ -3 & 1 \end{pmatrix}\begin{pmatrix} -2\\ 5 \end{pmatrix}\\ &=1.\begin{pmatrix} -2+0\\ 6+5 \end{pmatrix}\\ &=\color{red}\begin{pmatrix} -2\\ 11 \end{pmatrix} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 99.&\textrm{Jika setiap titik pada grafik dengan}\\ &\textrm{dengan persamaan}\: \: y=\sqrt{x}\: \: \textrm{dicerminkan} \\ &\textrm{terhadap garis}\: \: y=x\: ,\: \textrm{maka persamaan}\\ &\textrm{grafik yang dihasilkan adalah}\, ...\\ &\begin{array}{lll}\\ \textrm{a}.\quad \color{red}y=x^{2}\: ,\: x\geq 0&&\\ \textrm{b}.\quad y=-\sqrt{x}\: ,\: x\geq 0&\\ \textrm{c}.\quad y=-x^{2}\: ,\: x\leq 0&\\ \textrm{d}.\quad y=\sqrt{-x}\: ,\: x\leq 0\\ \textrm{e}.\quad y=-\sqrt{-x}\: ,\: x\leq 0 \end{array}\\\\ &\quad\quad\qquad \textbf{UMB Tahun 2011 Kode 152}\\\\\\ &\textbf{Jawab}:\quad \textbf{a}\\ &\begin{aligned}\textrm{Dike}&\textrm{tahui bahwa}:\\ y&=\sqrt{x},\: \: \textrm{atau}\: \: y^{2}=x\\ \textbf{Alt}&\textbf{ernatif 1}\\ \textrm{mak}&\textrm{a}\: \: \textrm{saat dicerminkan terhadap}\\ \textrm{gari}&\textrm{s}\: \: y=x,\: \textrm{adalah}\: \: \color{red}x^{2}=y\\ \textrm{atau}&\: \: \color{red}y=x^{2}.\\ \textbf{Alt}&\textbf{ernatif 2}\\ \textrm{Jika}\: &\textrm{ingin dikerjakan dengan rumus}\\ \begin{pmatrix} x'\\ y' \end{pmatrix}&=M_{x=y}\begin{pmatrix} x\\ y \end{pmatrix}\\ &=\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}\\ &=\begin{pmatrix} y\\ x \end{pmatrix}\\ \textrm{Sela}&\textrm{njutnya hasilnya disubstitusikan}\\ \textrm{ke p}&\textrm{ersamaan}\: \: y=\sqrt{x}\Rightarrow \color{red}x'=\sqrt{y'}\\ \sqrt{y'} &=x'\: \: \: \textrm{maka}\\ y'&=\left ( x' \right )^{2}\: \: \: \textrm{selanjutnya}\\ y&=x^{2} \end{aligned} \end{array}$.

Sebelum dicerminkan terhadap garis y=x
Gambar kurva/grafik setelah cerminkan terhadap garis y=x

$\begin{array}{ll}\\ 100.&\textrm{Transformasi}\: \: T\: \: \textrm{adalah pencerminan}\\ &\textrm{terhadap garis}\: \: y=\displaystyle \frac{x}{3}\: \: \textrm{dilanjutkan oleh} \\ &\textrm{pencerminan terhadap garis}\: \: y=-3x.\\ &\textrm{Matriks yang bersesuian dengan}\\ &\textrm{transformasi}\: \: T\: \: \textrm{adalah}\, ...\\ &\begin{array}{lll}\\ \textrm{a}.\quad \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}&&\\ \textrm{b}.\quad \color{red}\begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}&\\ \textrm{c}.\quad \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}&\\ \textrm{d}.\quad \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}\\ \textrm{e}.\quad \begin{pmatrix} 0 & -1\\ -1 & 0 \end{pmatrix} \end{array}\\\\ &\quad\quad \textbf{SBMPTN Tahun 2013 Kode 433}\\\\\\ &\textbf{Jawab}:\quad \textbf{b}\\ &\begin{aligned}\textrm{Dike}&\textrm{tahui bahwa}:\\ \textrm{sebu}&\textrm{ah persamaan garis lurus}\\ \textrm{dapa}&\textrm{t dituliskan dengan}:\: y=\color{red}m\color{black}x\\ \textrm{Dike}&\textrm{tahui pula bahwa ada 2 garis}:\\ y_{1}&=\displaystyle \frac{1}{3}x\quad \textrm{dan}\: \: \: y_{2}=-3x\\ \textrm{seba}&\textrm{gai representasi transformasi}\: \: T.\\ \textrm{Kare}&\textrm{na}\: \: m_{1}\times m_{2}=\left ( \displaystyle \frac{1}{3} \right )(-3)=-1\\ \textrm{bera}&\textrm{rti 2 garis di atas saling tegak}\\ \textrm{luru}&\textrm{s dan hal ini seperti rotasi 2}\\ \textrm{kali}\: \: &90^{\circ}\: \: \textrm{atau}\: \: 180^{\circ}\\ \textrm{Jadi},&\: T=\color{purple}\begin{pmatrix} \cos 180^{\circ} & -\sin 180^{\circ}\\ \sin 180^{\circ} & \cos 180^{\circ} \end{pmatrix}\\ \Leftrightarrow &\: T=\color{red}\begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix} \end{aligned} \end{array}$.


DAFTAR PUSTAKA

  1. Johanes, Kastolan, Sulasim, 2006. Kompetensi Matematika 3A SMA Kelas XII Program IPA Semester Pertama. Jakarta: YUDHISTIRA.
  2. Nugroho, P. A. Gunarto, D. 2013. Big Bank Soal-Bahas MAtematika SMA/MA. Jakarta: WAHYUMEDIA.
  3. Sharma,S.N., dkk. 2017. Jelajah Matematika SMA Kelas XI Program Wajib. Jakarta: YUDHISTIRA.