Tampilkan postingan dengan label Practice Question 10 Preparation for PAS Odd Mathematics Compulsory Class XI. Tampilkan semua postingan
Tampilkan postingan dengan label Practice Question 10 Preparation for PAS Odd Mathematics Compulsory Class XI. Tampilkan semua postingan

Latihan Soal 10 Persiapan PAS Gasal Matematika Wajib Kelas XI

 91.Titik A(4,-4) dicerminkan terhadapgarisy=xtan15menghasilkanbayanganA(a,b)adalah...a.3d.43b.23c.33e.63Jawab:d(ab)=(cos2θsin2θsin2θcos2θ)(xy)=(cos2.15sin2.15sin2.15cos2.15)(44)=(cos30sin30sin30cos30)(44)=(1231212123)(44)=(2322+23){a=232b=2+23maka nilai daria+b=(232+2+23)=43.

92.Lingkaranx2+y25x+8y+7=0ditranslasikan olehT=(mn)menghasilkanbayanganx2+y29x+2y+6=0.Nilaim+n=...a.2d.5b.3c.4e.6Jawab:dDiketahui sebuah lingkaran dengan persamaan:x2+y25x+8y+7=0karena akibat translasi, maka{x=xmy=ynx2+y25x+8y+7=0sehingga(xm)2+(yn)25(xm)+8(yn)+7=0x2+y22mx2ny+m2+n25x+5m+8y8n+7=0x2+y2(2m+5)x+(82n)y+m2+n2+5m8n+7=0x2+y29x+2y+6=0(akhir bayangan){9=2m+5m=22=82nn=3Jadi , nilaim+n=2+3=5.

93.Jika titik A(-2,1) dicerminkan terhadap garisy=13x3,maka bayangan darititik \textit{A} tersebut adalah....a.A(1123,12+3)b.A(1123,12+3)c.A(1123,123)d.A(1123,123)e.A(1+123,12+3)Jawab:bDiketahuibahwa:y=13x3=(133)x=(tan30)x=tan(18030)x=tan150.xmakaθ=1502θ=300(xy)=(cos2θsin2θsin2θcos2θ)(xy)=(cos300sin300sin300cos300)(21)=(1212312312)(21)=(1123312).

94.Bayangan titik A(2,4) dicerminkan terhadap garisyx=0dilanjutkanke garisx33y=0adalah...a.A(2+3,1+23)b.A(2+3,123)c.A(13,2+3)d.A(2+3,1+23)e.A(23,123)Jawab:aDiketahui bahwa:{x33y=0y=133xy=tan30.xxy=0y=x(xy)=(cos2θsin2θsin2θcos2θ)(0110)(xy)=(cos2.30sin2.30sin2.30cos2.30)(0110)(xy)=(1212312312)(0110)(24)=(3+21+23).

95.JikaT1=(1211)danT2=(2513)maka bayangan garisx+y+1=0olehT2T1adalah...a.x2y1=0b.x+2y1=0c.x+2y+1=0d.x2y+1=0e.x+y1=0Jawab:aDiketahui bahwa:(xy)=T2T1(xy)=(2513)(1211)(xy)=(2+54+51+32+3)(xy)=(3121)(xy)=(3x+y2x+y)Diperolehx=3x+yy=2x+yxy=xx=xy....(1)makay=x3x=x3(xy)=3y2x....(2)Sehinggax+y+1=0xy+3y2x+1=0x+2y+1=0x2y1=0makabayangan garisnyax2y1=0.

96.Garis2x+y+4=0ditranslasikanoleh(25)dilanjutkan transformasioleh(1201)persamaan bayangannyaadalah...a.2x+y+3=0b.2x3y+3=0c.2x+3y+3=0d.3x+2y+3=0e.3x2y+3=0Jawab:bDiketahui bahwa:(xy)=(xy)+(25)=(x2y+5)(xy)=(1201)(xy)=(1201)(x2y+5)=(x2+2y+10y+5)=(x+2y+8y+5)Diperolehx=x+2y+82y=2y+10x2y=x2x=x2y+2....(1)makay=y5....(2)sehingga2x+y+4=02(x2y+2)+(y5)+4=02x3y+3=0makabayangan garisnya2x3y+3=0.

97.DiketahuiMadalah pencerminan terhadapgarisy=xdanTadalah transformasiyang dinyatakan oleh matriks(2301)Koordinat bayangan titikA(2,8)olehtransformasiMdilanjutkan olehTadalah...a.(10,2)b.(2,10)c.(10,2)d.(10,2)e.(2,10)Jawab:cDiketahui bahwa:(xy)=TM(xy)=(2301)(0110)(28)=(032+00+10+0)(28)=(3210)(28)=(6+162+0)=(102).

98.JikaWadalah transformasi olehmatriks(1031),maka titik muladariW(2,5)adalah...a.(11,2)b.(11,2)c.(2,11)d.(2,11)e.(12,11)Jawab:cDimisalkan:A=(25),danW=(1031),sertaX=(xy)makaA=BXB1A=B1BXB1A=I.XB1A=XX=B1A(xy)=1|1031|(1031)(25)=1.(2+06+5)=(211).

99.Jika setiap titik pada grafik dengandengan persamaany=xdicerminkanterhadap garisy=x,maka persamaangrafik yang dihasilkan adalah...a.y=x2,x0b.y=x,x0c.y=x2,x0d.y=x,x0e.y=x,x0UMB Tahun 2011 Kode 152Jawab:aDiketahui bahwa:y=x,atauy2=xAlternatif 1makasaat dicerminkan terhadapgarisy=x,adalahx2=yatauy=x2.Alternatif 2Jikaingin dikerjakan dengan rumus(xy)=Mx=y(xy)=(0110)(xy)=(yx)Selanjutnya hasilnya disubstitusikanke persamaany=xx=yy=xmakay=(x)2selanjutnyay=x2.

Sebelum dicerminkan terhadap garis y=x
Gambar kurva/grafik setelah cerminkan terhadap garis y=x

100.TransformasiTadalah pencerminanterhadap garisy=x3dilanjutkan olehpencerminan terhadap garisy=3x.Matriks yang bersesuian dengantransformasiTadalah...a.(1001)b.(1001)c.(1001)d.(0110)e.(0110)SBMPTN Tahun 2013 Kode 433Jawab:bDiketahui bahwa:sebuah persamaan garis lurusdapat dituliskan dengan:y=mxDiketahui pula bahwa ada 2 garis:y1=13xdany2=3xsebagai representasi transformasiT.Karenam1×m2=(13)(3)=1berarti 2 garis di atas saling tegaklurus dan hal ini seperti rotasi 2kali90atau180Jadi,T=(cos180sin180sin180cos180)T=(1001).


DAFTAR PUSTAKA

  1. Johanes, Kastolan, Sulasim, 2006. Kompetensi Matematika 3A SMA Kelas XII Program IPA Semester Pertama. Jakarta: YUDHISTIRA.
  2. Nugroho, P. A. Gunarto, D. 2013. Big Bank Soal-Bahas MAtematika SMA/MA. Jakarta: WAHYUMEDIA.
  3. Sharma,S.N., dkk. 2017. Jelajah Matematika SMA Kelas XI Program Wajib. Jakarta: YUDHISTIRA.