$\begin{array}{ll}\\ 31.&\textrm{Diketahui}\: \: f(x)=2\cos x-2020\\ &\textrm{Turunan pertama fungsi}\: \: f(x)\: \: \textrm{adalah}....\\ &\begin{array}{llll}\\ \textrm{a}.&2\sin x\\ \color{red}\textrm{b}.&-2\sin x\\ \textrm{c}.&-2\sin x-2020x\\ \textrm{d}.&2\sin ^{2}x\\ \textrm{e}.&2\cos x-2020x \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{b}\\ &\begin{aligned}f(x)&=2\cos x-2020\\ f'(x)&=\color{red}-2\sin x \end{aligned}\end{array}$
$\begin{array}{ll}\\ 32.&\textrm{Jika}\: \: f'(x)\: \: \textrm{adalah turunan pertama dari}\\ &\textrm{fungsi}\: \: f(x)=\sin ^{7}x\: ,\: \textrm{maka}\: \: f'(x)=....\\ &\begin{array}{llll}\\ \textrm{a}.&7\cos^{6} x\\ \textrm{b}.&7\cos^{7} x\\ \color{red}\textrm{c}.&7\sin^{6} x\cos x\\ \textrm{d}.&7\cos ^{6}x\sin x\\ \textrm{e}.&7\cos ^{6}x\sin ^{6}x \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{c}\\ &\begin{aligned}f(x)&=\sin ^{7}x\\ \textrm{guna}&\textrm{kan formula}\\ &\color{red}y=a.u^{n}\Rightarrow y'=n.a.u^{n-1}.u'\\ f'(x)&=7\sin ^{6}x\left ( \cos x \right )=\color{red}7\sin ^{6}x\cos x \end{aligned}\end{array}$
$\begin{array}{ll}\\ 33.&\textrm{Turunan pertama fungsi}\: \: g(x)=-5\sin ^{3}x\\ &\textrm{adalah}\: \: g'(x)=....\\ &\begin{array}{llll}\\ \textrm{a}.&-5\sin ^{2}x\cos x\\ \textrm{b}.&-5\sin ^{2}\cos ^{2}x\\ \color{red}\textrm{c}.&-15\sin ^{2}x\cos x\\ \textrm{d}.&-15\cos ^{3}x\\ \textrm{e}.&-15\sin ^{4}x \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{c}\\ &\begin{aligned}g(x)&=-5\sin ^{3}x\\ \textrm{guna}&\textrm{kan formula}\\ &\color{red}y=a.u^{n}\Rightarrow y'=n.a.u^{n-1}.u'\\ g'(x)&=-5\left ( 3\sin ^{2}x \right )(\cos x)=\color{red}-15\sin ^{2}x\cos x \end{aligned}\end{array}$
$\begin{array}{ll}\\ 34.&\textrm{Jika}\: \: h(x)=4x^{3}+\sin x+\cos x\\ &\textrm{maka}\: \: h'(x)=....\\ &\begin{array}{llll}\\ \color{red}\textrm{a}.&12x^{2}+\cos x-\sin x\\ \textrm{b}.&12x^{2}-\cos x+\sin x\\ \textrm{c}.&4x^{3}-\cos x-\sin x\\ \textrm{d}.&4x^{3}-\sin x-\cos x\\ \textrm{e}.&12x^{3}+\cos x+\sin x \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{a}\\ &\begin{aligned}h(x)&=4x^{3}+\sin x+\cos x\\ \textrm{guna}&\textrm{kan formula}:\: \color{red}y=a.u^{n}\Rightarrow y'=n.a.u^{n-1}.u'\\ \textrm{pada}&\: \textrm{fungsi aljabarnya, yaitu}:\color{black}y=4x^{3}\Rightarrow y'=12x^{2}\\ \textrm{seda}&\textrm{ngkan fungsi transendennya mengikuti}\\ \textrm{turu}&\textrm{nan fungsi trigonometri biasa. Sehingga}\\ f'(x)&=\color{red}12x^{2}+\cos x-\sin x \end{aligned}\end{array}$
$\begin{array}{ll}\\ 35.&\textrm{Jika}\: \: p(x)=-\cos ^{4}x,\: \: \textrm{maka nilai}\\ &\textrm{maka}\: \: p'\left ( \displaystyle \frac{\pi }{3} \right )=....\\ &\begin{array}{llll}\\ \textrm{a}.&0\\ \textrm{b}.&\sqrt{3}\\ \textrm{c}.&\displaystyle \frac{1}{2}\sqrt{3}\\ \color{red}\textrm{d}.&\displaystyle \frac{1}{4}\sqrt{3}\\ \textrm{e}.&1 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{d}\\ &\begin{aligned}p(x)&=-\cos ^{4}x\\ \color{red}p'(x)&\color{red}=-4\cos ^{3}x.(-\sin x)=4\cos ^{3}x\sin x\\ p'\left ( \displaystyle \frac{\pi }{3} \right )&=4\cos ^{3}\left ( \displaystyle \frac{\pi }{3} \right ).\sin \left ( \displaystyle \frac{\pi }{3} \right )\\ &=4\cos ^{3}60^{\circ}\times \sin 60^{\circ}\\ &=4\left ( \displaystyle \frac{1}{2} \right )^{3}\times \left ( \displaystyle \frac{1}{2}\sqrt{3} \right )\\ &=\displaystyle \frac{4}{16}\sqrt{3}\\ &=\color{red}\displaystyle \frac{1}{4}\sqrt{3} \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 36.&\textrm{Turunan pertama}\: \: q(x)=\sin ^{2}x+\cos ^{2}x\\ &\textrm{adalah}\: \: q'(x)=....\\ &\begin{array}{llll}\\ \textrm{a}.&\cos ^{2}x-\sin ^{2}x\\ \textrm{b}.&2\cos ^{2}x-2\sin ^{2}x\\ \textrm{c}.&\cos x-\sin x\\ \textrm{d}.&2\cos x-2\sin x\\ \color{red}\textrm{e}.&0 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{e}\\ &\begin{aligned}q(x)&=\sin ^{2}x+\cos ^{2}x\\ \color{red}\textrm{guna}&\color{red}\textrm{kan formula identitas}:\: \color{black}\sin ^{2}x+\cos ^{2}x=1\\ \textrm{Sehi}&\textrm{ngga soal di atas dapat dituliskan menjadi}\\ q(x)&=1,\: \: \textrm{maka}\\ q'(x)&=0\\ \color{purple}\textrm{inga}&\color{purple}\textrm{t bahwa}\: \: \color{black}y=a\Rightarrow \displaystyle \frac{dy}{dx}=\color{red}0 \end{aligned}\end{array}$
$\begin{array}{ll}\\ 37.&\textrm{Nilai dari}\: \: \underset{h\rightarrow 0}{\textrm{lim}}\: \displaystyle \frac{\sin \left (\displaystyle \frac{\pi }{3}+h \right )-\sin \displaystyle \frac{\pi }{3}}{h}\\ &\textrm{adalah}....\\ &\begin{array}{llll}\\ \textrm{a}.&-\displaystyle \frac{1}{2}\sqrt{3}\\ \textrm{b}.&-\displaystyle \frac{1}{2}\\ \color{red}\textrm{c}.&0\\ \textrm{d}.&\displaystyle \frac{1}{2}\\ \textrm{e}.&\displaystyle \frac{1}{2}\sqrt{3} \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{c}\\ &\begin{aligned}\textrm{Dari}&\: \textrm{soal diketahui}:\: \\ f(x)&=\sin \displaystyle \frac{\pi }{3}\\ \textrm{Nila}&\textrm{i dari}\: \: \color{purple}\underset{h\rightarrow 0}{\textrm{lim}}\: \displaystyle \frac{\sin \left (\displaystyle \frac{\pi }{3}+h \right )-\sin \displaystyle \frac{\pi }{3}}{h}\\ \textrm{arti}&\textrm{nya bermakna, berapkah}\: \: f'\left ( x \right )?\\ \color{red}\textrm{maka}&\\ f'\left ( x \right )&=\color{red}0 \end{aligned}\end{array}$
$\begin{array}{ll}\\ 38.&\textrm{Jika}\: \: f(x)=8x-\sin ^{3}x,\\ &\textrm{maka nilai}\: \: \underset{h\rightarrow 0}{\textrm{lim}}\: \displaystyle \frac{f(x+h)-f(x)}{h}\\ &\textrm{adalah}....\\ &\begin{array}{llll}\\ \textrm{a}.&4x^{2}-3\cos^{2}x \\ \textrm{b}.&8x-3\sin ^{2}x\cos x\\ \color{red}\textrm{c}.&8-3\sin ^{2}x\cos x\\ \textrm{d}.&8+\sin ^{2}x\cos x\\ \textrm{e}.&3\sin ^{2}x\cos x \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{c}\\ &\begin{aligned}\textrm{Dike}&\textrm{tahui dari soal}\: f(x)=8x-\sin ^{3}x\\ \color{red}\textrm{maka}&\: \textrm{nilai dari}\: \: \color{purple}\underset{h\rightarrow 0}{\textrm{lim}}\: \displaystyle \frac{f(x+h)-f(x)}{h}=f'(x)\\ f'(x)&=\color{red}8-3\sin ^{2}x\cos x \end{aligned}\end{array}$
$\begin{array}{ll}\\ 39.&\textrm{Turunan pertama fungsi}\: \: f(x)=\sqrt{\sin x},\\ &\textrm{adalah}\: \: f'(x)=....\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle \frac{1}{2\sqrt{\sin x}} \\ \textrm{b}.&\displaystyle \frac{\cos x}{\sqrt{\sin x}}\\ \color{red}\textrm{c}.&\displaystyle \frac{\cos x}{2\sqrt{\sin x}}\\ \textrm{d}.&-\displaystyle \frac{\sin x}{2\sqrt{\cos x}}\\ \textrm{e}.&\displaystyle \frac{2\cos x}{\sqrt{\sin x}} \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{c}\\ &\begin{aligned}\textrm{Dike}&\textrm{tahui}\: \color{black}f(x)=\sqrt{\sin x}=\sin ^{.^{\frac{1}{2}}}x\\ f'(x)&=\displaystyle \frac{1}{2}\left ( \sin ^{.^{-\frac{1}{2}}}x \right ).(\cos x)\\ &=\displaystyle \frac{\cos x}{2\sin ^{.^{\frac{1}{2}}}x}\\ &=\color{red}\displaystyle \frac{\cos x}{2\sqrt{\sin x}} \end{aligned} \end{array}$
$\begin{array}{ll}\\ 40.&\textrm{Jika}\: \: g'(x)\: \: \textrm{adalah turunan pertama}\\ &\textrm{fungsi}\: \: g(x)\: \: \textrm{dengan}\: \: g(x)=5\tan ^{2}x,\\ &\textrm{maka}\: \: g'(x)=....\\ &\begin{array}{llll}\\ \textrm{a}.&10\cos ^{2}x\sin x\\ \textrm{b}.&10\sin ^{2}x\cos x\\ \color{red}\textrm{c}.&\displaystyle \frac{10\sin x}{\cos ^{3}x}\\ \textrm{d}.&\displaystyle \frac{10\cos ^{3}x}{\sin x}\\ \textrm{e}.&\displaystyle \frac{10}{\sin ^{2}x-\cos ^{2}x} \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{c}\\ &\begin{aligned}\textrm{Dike}&\textrm{tahui}\: g(x)=5\tan ^{2}x\\ g'(x)&=5\left ( 2\tan x \right ).\left ( \sec ^{2}x \right )\\ &=\color{purple}10\tan x\times \left ( \displaystyle \frac{1}{\cos ^{2}x} \right )\\ &=10\left ( \displaystyle \frac{\sin x}{\cos x} \right )\times \left ( \displaystyle \frac{1}{\cos ^{2}x} \right )\\ &=\color{red}\displaystyle \frac{10\sin x}{\cos ^{3}x} \end{aligned} \end{array}$.