Tampilkan postingan dengan label Practice Question 7 Preparation for PAS Odd Mathematics Compulsory Class XI. Tampilkan semua postingan
Tampilkan postingan dengan label Practice Question 7 Preparation for PAS Odd Mathematics Compulsory Class XI. Tampilkan semua postingan

Latihan Soal 7 Persiapan PAS Gasal Matematika Wajib Kelas XI

 $\begin{array}{ll}\\ 61.&\textrm{Diketahui matriks}\\ &\textrm{A}=\begin{pmatrix} ^{a}\log 6 & 2\\ 1 & a+3b \end{pmatrix},\\ & \textrm{B}=\begin{pmatrix} 0 &-5 \\ -6 & 3a-5b \end{pmatrix},\: \: \textrm{dan}\\ & \textrm{C}=\begin{pmatrix} ^{a}\log 2 & -\displaystyle \frac{1}{2}\\ -2(b+c) & 3 \end{pmatrix},\\ &\textrm{serta}\: \: \textrm{I}\: \: \textrm{adalah matriks identitas}.\\ &\textrm{Jika}\: \: 2\textrm{A}+\textrm{B}-2\textrm{C}=2\textrm{I},\\ &\textrm{maka nilai}\: \: 4a+b+c\: \: \textrm{adalah}....\\ &\begin{array}{llllllll}\\ \textrm{a}.&1\\ \textrm{b}.&5\\ \textrm{c}.&7\\ \textrm{d}.&11\\ \color{red}\textrm{e}.&13 \end{array}\\\\ &\textbf{Jawab}:\quad \color{red}\textbf{e}\\ &\begin{aligned}&2\textrm{A}+\textrm{B}-2\textrm{C}=2\textrm{I}\\ &2\begin{pmatrix} ^{a}\log 6 & 2\\ 1 & a+3b \end{pmatrix}+\begin{pmatrix} 0 &-5 \\ -6 & 3a-5b \end{pmatrix}\\ &-2\begin{pmatrix} ^{a}\log 2 & -\displaystyle \frac{1}{2}\\ -2(b+c) & 3 \end{pmatrix}=2\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}\\ &\begin{pmatrix} \color{black}2.\: ^{a}\log 6-2.\: ^{2}\log 2 & 2.2-5-2\left ( -\displaystyle \frac{1}{2} \right )\\ \color{red}2.1 -6-2(-2(b+c))& \color{purple}2(a+3b)+3a-5b-2.3 \end{pmatrix}=\begin{pmatrix} \color{black}2 & 0\\ \color{red}0 & \color{purple}2 \end{pmatrix}\\ &\begin{cases} \color{black}2 &=\color{black}2.\: ^{a}\log 6-2.\: ^{2}\log 2 \\ \color{red}0 & =\color{red}2.1 -6-2(-2(b+c)) \\ \color{purple}2 & =2(a+3b)+3a-5b-2.3 \end{cases}\\ &\begin{array}{|c|c|}\hline \textrm{dari persamaan}\: \: (1)&\textrm{dari persamaan}\: \: (2)\\\hline \color{red}\begin{aligned}2.\: ^{a}\log 6-2.\: ^{2}\log 2&=2\\ ^{a}\log 6^{2}-\: ^{2}\log 2^{2}&=2\\ ^{a}\log \displaystyle \frac{6^{2}}{2^{2}}&=2\\ ^{a}\log 9&=2\\ 9&=a^{2}\\ 3&=a\\ 12&=4a \end{aligned}&\begin{aligned}2.1 -6-2(-2(b+c))&=0\\ 2-6+4(b+c)&=0\\ 4(b+c)&=4\\ b+c&=1\\ &\\ \textrm{sehingga diperoleh}&,\\ 4a+b+c=12+1&\\ =13\: \: \: \quad& \end{aligned}\\\hline \end{array} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 62.&\textrm{Jika}\: \: \begin{pmatrix} -4x & 2y\\ y & x \end{pmatrix}\begin{pmatrix} 2\\ -3 \end{pmatrix}=\begin{pmatrix} 2\\ -12 \end{pmatrix},\\ & \textrm{maka nilai}\: \: xy=....\\ &\begin{array}{llllllll}\\ \color{red}\textrm{a}.&-6\\ \textrm{b}.&-3\\ \textrm{c}.&2\\ \textrm{d}.&3\\ \textrm{e}.&6 \end{array}\\\\ &\textbf{Jawab}:\quad \color{red}\textbf{a}\\ &\begin{array}{|c|c|}\hline \begin{aligned}\begin{pmatrix} -4x & 2y\\ y & x \end{pmatrix}\begin{pmatrix} 2\\ -3 \end{pmatrix}&=\begin{pmatrix} 2\\ -12 \end{pmatrix}\\ \begin{pmatrix} -4x.2+2y.-3\\ y.2+x.-3 \end{pmatrix}&=\begin{pmatrix} 2\\ -12 \end{pmatrix}\\ \begin{pmatrix} -8x-6y\\ -3x+2y \end{pmatrix}&=\begin{pmatrix} 2\\ -12 \end{pmatrix}\\\\ \textbf{SPLDV}& \end{aligned} &\color{red}\begin{aligned}-8x-6y&=2\: \qquad (\times 1)\\ -3x+2y&=-12\quad (\times 3)\\ \textrm{menjadi}&\\ -8x-6y&=2\\ -9x+6y&=-36\quad _{+}\\ ----&---\\ -17x&=-34\\ x&=2 \end{aligned}\\\hline \color{black}\begin{aligned}-8x-6y&=2\\ -8(2)-6y&=2\\ -16-6y&=2\\ -6y&=2+16\\ -6y&=18\\ y&=-3\\ \textrm{sehingga}&\\ xy&=2.(-3)=-6 \end{aligned}&\\\hline \end{array} \end{array}$

$\begin{array}{ll}\\ 63.&\textrm{Diketahui}\: \: \textrm{N}=\begin{pmatrix} -2&3\\ -1 & 4 \end{pmatrix}\\ & \textrm{dan}\: \: \textrm{M}=\begin{pmatrix} -1&3\\ -1&5 \end{pmatrix}.\\ &\textrm{Jika}\: \: \textrm{N}^{2}=p\textrm{N}-q\textrm{M},\\ &: \textrm{maka nilai}\: \: p-q=....\\ &\begin{array}{llllllll}\\ \color{red}\textrm{a}.&2\\ \textrm{b}.&3\\ \textrm{c}.&4\\ \textrm{d}.&5\\ \textrm{e}.&6 \end{array}\\\\ &\textbf{Jawab}:\quad \color{red}\textbf{a}\\ &\begin{aligned}&\textrm{N}^{2}=p\textrm{N}-q\textrm{M}\\ &\begin{pmatrix} -2&3\\ -1 & 4 \end{pmatrix}\times \begin{pmatrix} -2&3\\ -1 & 4 \end{pmatrix}=p\begin{pmatrix} -2&3\\ -1 & 4 \end{pmatrix}-q\begin{pmatrix} -1&3\\ -1&5 \end{pmatrix}\\ &\begin{pmatrix} -2.-2+3.-1 & -2.3+3.4\\ -1.-2+4.-1 & -1.3+4.4 \end{pmatrix}=\begin{pmatrix} -2p+q & 3p-3q\\ -p+q & 4p-5q \end{pmatrix}\\ &\begin{pmatrix} 4-3 & -6+12\\ 2-4 & -3+16 \end{pmatrix}=\begin{pmatrix} -2p+q & 3p-3q\\ -p+q & 4p-5q \end{pmatrix}\\ &\begin{pmatrix} 1 & 6\\ -2 & 13 \end{pmatrix}=\begin{pmatrix} -2p+q & 3p-3q\\ -p+q & 4p-5q \end{pmatrix}\\\\ &\begin{array}{|c|c|}\hline \color{purple}\begin{aligned}-2p+q&=1\\ -p+q&=-2\quad _{-}\\ ----&---\\ -p\qquad&=3\\ p&=-3\\ &\\ & \end{aligned}&\color{red}\begin{aligned}-p+q&=-2\\ -(-3)+q&=-2\\ q&=-2-3\\ q&=-5\\ \textrm{sehingga}&\: \textrm{didapatkan}\\ p-q&=-3-(-5)\\ &=2 \end{aligned}\\\hline \end{array} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 64.&\textrm{Diketahui matriks}\: \: \textrm{Z}=\begin{pmatrix} -2&6\\ -3 & 5 \end{pmatrix}\\ & \textrm{dan}\: \: f(x)=x^{2}-x.\\ &\textrm{Jika}\: \: f(\textrm{Z})=\begin{pmatrix} -3p-8q & 12\\ -6 & -2(p+q) \end{pmatrix},\\ & \textrm{maka nilai}\: \: p^{2}-q^{2}=....\\ &\begin{array}{llllllll}\\ \textrm{a}.&5\\ \color{red}\textrm{b}.&7\\ \textrm{c}.&9\\ \textrm{d}.&12\\ \textrm{e}.&15 \end{array}\\\\ &\textbf{Jawab}:\quad \color{red}\textbf{b}\\ &\begin{aligned}f(\color{red}\textrm{Z})&=\begin{pmatrix} -3p-8q & 12\\ -6 & -2(p+q) \end{pmatrix}\\ \color{red}\textrm{Z}^{2}-\textrm{Z}&=\begin{pmatrix} -3p-8q & 12\\ -6 & -2(p+q) \end{pmatrix}\\ \begin{pmatrix} -2&6\\ -3 & 5 \end{pmatrix}\times \begin{pmatrix} -2&6\\ -3 & 5 \end{pmatrix}-\begin{pmatrix} -2&6\\ -3 & 5 \end{pmatrix}&=\begin{pmatrix} -3p-8q & 12\\ -6 & -2(p+q) \end{pmatrix}\\ \begin{pmatrix} 4-18 & -12+30\\ 6-15 & -18+25 \end{pmatrix}-\begin{pmatrix} -2 & 6\\ -3 & 5 \end{pmatrix}&=\begin{pmatrix} -3p-8q & 12\\ -6 & -2(p+q) \end{pmatrix}\\ \begin{pmatrix} -12 & 12\\ -6 & 2 \end{pmatrix}&=\begin{pmatrix} -3p-8q & 12\\ -6 & -2(p+q) \end{pmatrix}\\ \end{aligned} \\ &\begin{aligned} \color{black}\textrm{Sehingga}&\\ -12&=-3p-8q\quad.................(1)\\ -1&=p+q\quad......................(2)\\ \textrm{persamaan}&\: (2)\: \: \textrm{ke persamaan}\: \: (1)\\ -12&=-3p-3q-5q=-3(p+q)-5q\\ -12&=-3(-1)-5q\\ -12&=3-5q\\ 5q&=3+12\\ q&=3\quad........................(3)\\ \textrm{persamaan}&\: \: (3)\: \: \textrm{ke persamaan}\: \: (2)\\ \color{red}p+q&=-1\\ p&=-1-q=-1-3=-4\\ \color{red}p^{2}-q^{2}&=(-4)^{2}-3^{2}=16-9\\ &=7 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 65.&(\textbf{SBMPTN 2013})\\ &\textrm{Jika}\: \: A=\begin{pmatrix} 2 & -1 & 1\\ a & b & c \end{pmatrix},\\ &B=\begin{pmatrix} -2 & 1\\ 1 & -1\\ 0 & 2 \end{pmatrix}\: \: \textrm{dan}\\ &AB=\begin{pmatrix} -5 & 5\\ 3 & -3 \end{pmatrix}\\ &\textrm{maka nilai}\: \: 2c-a=\: ....\\ &\begin{array}{llllllll}\\ \color{red}\textrm{a}.&0\\ \textrm{b}.&2\\ \textrm{c}.&4\\ \textrm{d}.&5\\ \textrm{e}.&6 \end{array}\\\\ &\textbf{Jawab}:\quad \color{red}\textbf{a}\\ &\begin{aligned}&AB=\begin{pmatrix} -5 & 5\\ 3 & -3 \end{pmatrix}\\ &\begin{pmatrix} 2 & -1 & 1\\ a & b & c \end{pmatrix}\begin{pmatrix} -2 & 1\\ 1 & -1\\ 0 & 2 \end{pmatrix}=\begin{pmatrix} -5 & 5\\ 3 & -3 \end{pmatrix}\\ &\begin{pmatrix} -5 & 5\\ \color{black}-2a+b&\color{black}a-b+2c \end{pmatrix}=\begin{pmatrix} -5 & 5\\ \color{red}3 & \color{red}-3 \end{pmatrix}\\ &\begin{array}{lllll}\\ -2a+b&=3&\\ a-b+2c&=-3&+\\\hline \qquad \color{red}2c-a&=0 \end{array} \end{aligned} \end{array}$.


DAFTAR PUSTAKA

  1. Budhi, W.S. 2018. Bupena Matematika SMA/MA Kelas XI Kelompok Wajib. Jakarta: ERLANGGA
  2. Kanginan, M., Terzalgi, Z. 2014. Matematika untuk SMA-MA/SMK Kelas XI (Wajib). Bandung: SEWU.
  3. Sharma, S. N. 2017. Jelajah Matematika 2 SMA Kelas XI Program Wajib. Jakarta: YUDHISTIRA.
  4. Suparmin, S. Malau, A. 2014. Mainstream Matematika Dasar & Matematika IPA untuk Siswa SMA/MA Kelompok IPA. Bandung: YRAMA WIDYA.

$\begin{array}{ll}\\ 66.&\textrm{Determinan untuk matriks}\: \: \begin{pmatrix} 2 & -5\\ 3 & -1 \end{pmatrix}=....\\ &\begin{array}{llllllll}\\ \textrm{a}.&-17\\ \textrm{b}.&-13\\ \textrm{c}.&11\\ \color{red}\textrm{d}.&13\\ \textrm{e}.&17 \end{array}\\\\ &\textbf{Jawab}:\quad \color{red}\textbf{d}\\ &\begin{aligned}\textrm{Determinan}&\: \textrm{dari matriks}\: \: \begin{pmatrix} 2 & -5\\ 3 & -1 \end{pmatrix}\\ &=\begin{vmatrix} 2 & -5\\ 3 & -1 \end{vmatrix}=2(-1)-3(-5)\\ &=-2+15\\ &=13 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 67.&\textrm{Determinan untuk matriks}\\ &\begin{pmatrix} 2 & -1&-1\\ 1 & 4&-1\\ 1&-2&3 \end{pmatrix}=....\\ &\begin{array}{llllllll}\\ \color{red}\textrm{a}.&10\\ \textrm{b}.&18\\ \textrm{c}.&22\\ \textrm{d}.&30\\ \textrm{e}.&36 \end{array}\\\\ &\textbf{Jawab}:\quad \color{red}\textbf{a}\\ &\begin{aligned}&\textrm{Determinan}\: \: \textrm{dari matriks}\\ &\begin{pmatrix} 2 & -1&-1\\ 1 & 4&-1\\ 1&-2&3 \end{pmatrix}\\ &=\begin{vmatrix} 2 & -1&-1\\ 1 & 4&-1\\ 1&-2&3 \end{vmatrix}\\ &=+(2.4.3)+(-1.-1.1)+(-1.1.-2)\\ &\quad -(1.4.-1)-(-2.-1.2)-(3.1.-1)\\ &=24+1+2+4-24+3\\ &=10 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 68.&\textrm{Jika diketahu matriks}\\ &\textrm{A}=\begin{pmatrix} x+3&-2\\ -16&2x-6 \end{pmatrix},\\ &\textrm{maka nilai dari}\: \: \: x\: \: \textrm{supaya matriks}\\ &\textrm{A tidak memiliki invers adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&1\\ \textrm{b}.&2\\ \textrm{c}.&3\\ \textrm{d}.&4\\ \color{red}\textrm{e}.&5 \end{array}\\\\ &\textbf{Jawab}:\quad \color{red}\textbf{e}\\ &\begin{aligned}\textrm{Invers}&\: \textrm{dari matriks A adalah}\: \: \: \textrm{A}^{-1}.\\ \textrm{A}^{-1}&=\displaystyle \frac{1}{det\: \textrm{A}}\times \color{red}Adjoin\: \textrm{A}.\\ \textrm{Karen}&\textrm{a}\: \textrm{tidak memiliki invers},\\ \textrm{maka}\: \, & det\: \textrm{A}=0,\: \textrm{sehingga}\\ det\: \textrm{A}&=\begin{vmatrix} x+3 & -2\\ -16 & 2x-6 \end{vmatrix}=0\\ &\Leftrightarrow (x+3)(2x-6)-(-16.-2)=0\\ &(\color{red}\textrm{masing-masing ruas dibagi 2})\\ &\Leftrightarrow (x+3)(x-3)-16=0\\ &\Leftrightarrow x^{2}-9-16=0\\ &\Leftrightarrow x^{2}-25=0\\ &\Leftrightarrow (x+5)(x-5)=0\\ &\Leftrightarrow x+5=0\quad \textrm{atau}\quad x-5=0\\ &\Leftrightarrow \: \: \: \, \, \color{red}x=-5\quad \textrm{atau}\quad x=5 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 69.&\textrm{Jika}\: \: \begin{vmatrix} 5^{2x} & -5\\ 1 & 1 \end{vmatrix}=6.5^{x}\\ &\textrm{maka}\: \: 5^{2x}\: \: \textrm{adalah}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&625\: \: \textrm{atau}\: \: 1\\ \color{red}\textrm{b}.&25\: \: \textrm{atau}\: \: 1\\ \textrm{c}.&25\: \: \textrm{atau}\: \: 0\\ \textrm{d}.&5\: \: \textrm{atau}\: \: 1\\ \textrm{e}.&5\: \: \textrm{atau}\: \: 0 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{b}\\ &\begin{aligned}&5^{2x}+5=6.5^{x}\\ &5^{2x}-6.5^{x}+5=0\\ &\left ( 5^{x}-1 \right )\left ( 5^{x}-5 \right )=0\\ &5^{x}-1=0\: \: \textrm{atau}\: \: 5^{x}-5=0\\ &5^{x}=1\: \: \textrm{atau}\: \: 5^{x}=5\\ &5^{x}=5^{0}\: \: \textrm{atau}\: \: 5^{x}=5^{1}\\ &x=0\: \: \textrm{atau}\: \: x=1\\ &\color{red}\textrm{maka}\\ &5^{2x}=\begin{cases} 5^{2.1} &=5^{2}=25 \\ 5^{2.0} &=5^{0}=1 \end{cases} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 70.&\textrm{Diketahu determinan suatu}\\ &\textrm{matriks adalah}\: \: \begin{vmatrix} x & 1 & 2\\ x & 1 & x\\ 5 & -3 & 7 \end{vmatrix}=0.\\ &\textrm{Jika}\: \: p\: \: \textrm{dan}\: \: q\: \: \textrm{adalah akar-akar}\\ &\textrm{yang memenuhi persamaan tersebut}\\ &\textrm{maka nilai dari}\: \: \: p+q\: \: \textrm{adalah}....\\ &\begin{array}{llllllll}\\ \textrm{a}.&-3\\ \textrm{b}.&-\displaystyle \frac{1}{3}\\ \textrm{c}.&-1\\ \color{red}\textrm{d}.&\displaystyle \frac{1}{3}\\ \textrm{e}.&3 \end{array}\\\\ &\textbf{Jawab}:\quad \color{red}\textbf{d}\\ &\begin{aligned}\textrm{Diketahui ba}&\textrm{hwa}:\\ \begin{vmatrix} x & 1 & 2\\ x & 1 & x\\ 5 & -3 & 7 \end{vmatrix}&=0\\ +(x.1.7)+&(1.x.5)+(2.x.-3)\\ -(5.1.2)&-(-3.x.x)-(7.x.1)=0\\ 7x+5x-6x&-10+3x^{2}-7x=0\\ 3x^{2}-x-10&=0\begin{cases} p & \textrm{salah satu akar} \\ q & \textrm{salah satu akar yang lain}, \end{cases}\\ \color{red}\textrm{dengan}\: \: \: &\begin{cases} a &=3 \\ b &=-1 \\ c &=-10 \end{cases}.\\ \textrm{maka}\: \: \: p+q\: \: &=-\displaystyle \frac{b}{a}=-\displaystyle \frac{-1}{3}\\ &=\color{red}\displaystyle \frac{1}{3} \end{aligned} \end{array}$