$\begin{array}{ll}\\ 81.&\textrm{Diketahui}\: \: f(x)=\cos ^{2}2x\: .\: \textrm{Jika}\\ &f''(x)=a\sin ^{2}bx+c\cos ^{2}dx,\: \textrm{nilai untuk}\\ &\displaystyle \frac{a-b}{c-d}=\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle \frac{5}{3}\\ \textrm{b}.&\displaystyle \frac{2}{3}\\ \color{red}\textrm{c}.&-\displaystyle \frac{3}{5}\\ \textrm{d}.&-\displaystyle \frac{6}{5}\\ \textrm{e}.&-\displaystyle \frac{9}{5} \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{c}\\ &\begin{aligned}&f(x)=\cos ^{2}2x\\ &f'(x)=2\cos 2x(-\sin 2x)(2)\\ &\: \qquad =-4\sin 2x\cos 2x\\ &\color{blue}f''(x)=-4\cos 2x.(2).\cos 2x-4\sin 2x.(-\sin 2x)(2)\\ &\: \: \quad\quad=8\sin ^{2}2x-8\cos ^{2}2x\\ &\textrm{Bandingkan dengan}\\ &\color{red}f''(x)=a\sin ^{2}bx+c\cos ^{2}dx\\ &\textrm{maka},\: \: a=8,\: b=2,\: c=-8,\: d=2\\ &\textrm{Jadi},\: \displaystyle \frac{a-b}{c-d}=\frac{8-2}{-8-2}=\color{red}-\frac{3}{5} \end{aligned} \end{array}$
$\begin{array}{ll}\\ 82.&\textrm{Diketahui}\: \: f(x)=\displaystyle \frac{\cos x}{\sin x+\cos x}\: .\: \textrm{Jika}\\ &f''(x)=\displaystyle \frac{m\cos 2x}{\left ( \sin 2x+n \right )^{2}}\: ,\: \textrm{nilai dari}\\ &m.n=\: ....\\ &\begin{array}{llll}\\ \color{red}\textrm{a}.&2\\ \textrm{b}.&4\\ \textrm{c}.&5\\ \textrm{d}.&8\\ \textrm{e}.&10 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{a}\\ &\begin{aligned}&f(x)=\displaystyle \frac{\cos x}{\sin x+\cos x}\\ &f'(x)=\displaystyle \frac{-\sin x(\sin x+\cos x)-\cos x(\cos x-\sin x)}{(\sin x+\cos x)^{2}}\\ &\, \qquad =\displaystyle \frac{-\sin ^{2}x-\cos ^{2}x+0}{\sin ^{2}+2\sin x\cos x+\cos ^{2}x}\\ &\, \qquad=\displaystyle \frac{-1}{1+\sin 2x}\\ &f''(x)=\displaystyle \frac{0-((-1).2\cos 2x)}{\left ( \sin 2x+1 \right )^{2}}=\frac{2\cos 2x}{\left ( \sin 2x+1 \right )^{2}}\\ &\color{red}\textrm{Bandingkan dengan yang diketahui}\\ &f''(x)=\displaystyle \frac{m\cos 2x}{\left ( \sin 2x+n \right )^{2}}\\ &\begin{cases} m &=2 \\ n &=2 \end{cases}\\ &\textrm{Jadi},\: \: m.n=2.1=\color{red}2 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 83.&\textrm{Salah satu titik belok dari fungsi}\\ & f(x)=\sin 2x\: \: \textrm{dengan}\: \: 0\leq x\leq 2\pi \\ &\textrm{adalah}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&\left ( \displaystyle \frac{\pi }{4},0 \right )\\ \color{red}\textrm{b}.&\left ( \displaystyle \frac{\pi }{2},0 \right )\\ \textrm{c}.&\left ( \displaystyle \frac{\pi }{4},1 \right )\\ \textrm{d}.&\left ( \displaystyle \frac{\pi }{2},1 \right )\\ \textrm{e}.&\left ( \pi ,1 \right ) \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{b}\\ &\begin{aligned}&f(x)=\sin 2x\\ &f'(x)=2\cos 2x\Rightarrow f''(x)=-4\sin 2x\\ &\color{black}\textrm{Syarat belok}\: \: f''(x)=0\\ &-4\sin 2x=0\Leftrightarrow \sin 2x=0\\ &\Leftrightarrow \sin 2x=\sin 0\\ &\Leftrightarrow 2x=0+k.2\pi \: \: \textrm{atau}\: \: 2x=\pi +k.2\pi \\ &\Leftrightarrow x=0+k.\pi \: \: \textrm{atau}\: \: x=\frac{\pi}{2} +k.\pi \\ &\Leftrightarrow \color{black}x=0,\: \color{red}x=\displaystyle \frac{\pi }{2},\: x=\pi \: ,\: x=\displaystyle \frac{3\pi }{2}\: \: \textrm{atau}\: \: \color{black}x=2\pi\\ &\bullet f\left ( \displaystyle \frac{\pi }{2} \right )=\sin 2\left ( \displaystyle \frac{\pi }{2} \right )=0\Rightarrow \color{red}\left ( \displaystyle \frac{\pi }{2},0 \right )\\ &\bullet f\left ( \displaystyle \pi \right )=\sin 2\left ( \displaystyle \pi \right )=0\Rightarrow \color{red}\left ( \displaystyle \pi ,0 \right )\\ &\bullet f\left ( \displaystyle \frac{3\pi }{2} \right )=\sin 2\left ( \displaystyle \frac{3\pi }{2} \right )=0\Rightarrow \color{red}\left ( \displaystyle \frac{3\pi }{2},0 \right ) \end{aligned} \end{array}$
$\begin{array}{ll}\\ 84.&\textrm{Diketahui fungsi}\: \: f(x)=-3\cos 2x+1\: \: \textrm{dengan}\\ &0<x<2\pi \: .\: \textrm{Salah satu koordinat titik belok}\\ &\textrm{dari fungsi}\: \: f(x)\: \: \textrm{tersebut}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&\left ( \displaystyle \frac{\pi }{2},2 \right )\\ \textrm{b}.&\left ( \displaystyle \frac{2\pi }{3},\frac{5}{2} \right )\\ \textrm{c}.&\left ( \displaystyle \frac{3\pi}{2} ,4 \right )\\ \color{red}\textrm{d}.&\left ( \displaystyle \frac{5\pi }{4},1 \right )\\ \textrm{e}.&\left ( \displaystyle \frac{5\pi }{3},\frac{5}{2} \right ) \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{d}\\ &\begin{aligned}&f(x)=-3\cos 2x+1\: \: \color{black}\textrm{untuk}\: \: \color{red}0<x<2\pi \\ &f'(x)=6\sin 2x\Rightarrow f''(x)=12\cos 2x\\ &\color{black}\textrm{Syarat belok}\: \: f''(x)=0\\ &12\cos 2x=0\Leftrightarrow \cos 2x=0\\ &\Leftrightarrow \cos 2x=\cos \displaystyle \frac{\pi }{2}\\ &\Leftrightarrow 2x=\pm \displaystyle \frac{\pi }{2}+k.2\pi\Leftrightarrow x=\pm \frac{\pi}{4} +k.\pi \\ &\Leftrightarrow \color{red}x=\displaystyle \frac{\pi }{4},\: x=\frac{3\pi}{4} \: ,\: x=\displaystyle \frac{5\pi }{4}\: \: \textrm{atau}\: \: x=\frac{7\pi }{4}\\ &\bullet f\left ( \displaystyle \frac{\pi }{4} \right )=-3\cos 2\left ( \displaystyle \frac{\pi }{4} \right )+1=1\Rightarrow \color{red}\left ( \displaystyle \frac{\pi }{4},1 \right )\\ &\bullet f\left ( \displaystyle \frac{3\pi }{4} \right )=-3\cos 2\left ( \displaystyle \frac{3\pi }{4} \right )+1=1\Rightarrow \color{red}\left ( \displaystyle \frac{3\pi }{4},1 \right )\\ &\bullet f\left ( \displaystyle \frac{5\pi }{4} \right )=-3\cos 2\left ( \displaystyle \frac{5\pi }{4} \right )+1=1\Rightarrow \color{red}\left ( \displaystyle \frac{5\pi }{4},1 \right )\\ &\bullet f\left ( \displaystyle \frac{7\pi }{4} \right )=-3\cos 2\left ( \displaystyle \frac{7\pi }{4} \right )+1=1\Rightarrow \color{red}\left ( \displaystyle \frac{7\pi }{4},1 \right ) \end{aligned} \end{array}$
$\begin{array}{ll}\\ 85.&\textrm{Diketahui fungsi}\: \: f(x)=\sin^{2} x+2\: \: \textrm{dengan}\\ &0<x<2\pi \: .\: \textrm{Salah satu koordinat titik belok}\\ &\textrm{dari fungsi}\: \: f(x)\: \: \textrm{tersebut}\: ....\\ &\begin{array}{llll}\\ \color{red}\textrm{a}.&\left ( \displaystyle \frac{\pi }{4},\frac{5}{2} \right )\\ \textrm{b}.&\left ( \displaystyle \frac{\pi }{3},\frac{11}{4} \right )\\ \textrm{c}.&\left ( \displaystyle \pi ,2 \right )\\ \textrm{d}.&\left ( \displaystyle \frac{4\pi }{3},\frac{11}{4} \right )\\ \textrm{e}.&\left ( \displaystyle \frac{11\pi }{6},\frac{9}{4} \right ) \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{a}\\ &\begin{aligned}&f(x)=\sin^{2} x+2\: \: \color{black}\textrm{untuk}\: \: \color{red}0<x<2\pi \\ &f'(x)=2\sin x\cos x\Rightarrow f'(x)=\sin 2x\\ &f''(x)=2\cos 2x\\ &\color{black}\textrm{Syarat belok}\: \: f''(x)=0\\ &2\cos 2x=0\Leftrightarrow \cos 2x=0\\ &\Leftrightarrow \cos 2x=\cos \displaystyle \frac{\pi }{2}\\ &\Leftrightarrow 2x=\pm \displaystyle \frac{\pi }{2}+k.2\pi\Leftrightarrow x=\pm \frac{\pi}{4} +k.\pi \\ &\Leftrightarrow \color{red}x=\displaystyle \frac{\pi }{4},\: x=\frac{3\pi}{4} \: ,\: x=\displaystyle \frac{5\pi }{4}\: \: \textrm{atau}\: \: x=\frac{7\pi }{4}\\ &\bullet f\left ( \displaystyle \frac{\pi }{4} \right )=\sin^{2} \left ( \displaystyle \frac{\pi }{4} \right )+2=\frac{5}{2}\Rightarrow \color{red}\left ( \displaystyle \frac{\pi }{4},\frac{5}{2} \right )\\ &\bullet f\left ( \displaystyle \frac{3\pi }{4} \right )=\sin^{2} \left ( \displaystyle \frac{3\pi }{4} \right )+2=\frac{5}{2}\Rightarrow \color{red}\left ( \displaystyle \frac{3\pi }{4},\frac{5}{2} \right )\\ &\bullet f\left ( \displaystyle \frac{5\pi }{4} \right )=\sin^{2} \left ( \displaystyle \frac{5\pi }{4} \right )+2=\frac{5}{2}\Rightarrow \color{red}\left ( \displaystyle \frac{5\pi }{4},\frac{5}{2} \right )\\ &\bullet f\left ( \displaystyle \frac{7\pi }{4} \right )=\sin^{2} \left ( \displaystyle \frac{7\pi }{4} \right )+2=\frac{5}{2}\Rightarrow \color{red}\left ( \displaystyle \frac{7\pi }{4},\frac{5}{2} \right ) \end{aligned} \end{array}$
$\begin{array}{ll}\\ 86.&\textrm{Diketahui fungsi}\: \: f(x)=\displaystyle \frac{1}{2}\sin 2x\: \: \textrm{dengan}\\ &0^{\circ}<x<360^{\circ} \: .\: \textrm{Kurva akan cekung}\\ &\textrm{ke atas pada interval}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&0^{\circ}<x<90^{\circ}\\ \textrm{b}.&0^{\circ}<x<90^{\circ}\: \: \textrm{atau}\: \: 180^{\circ}<x<270^{\circ}\\ \textrm{c}.&45^{\circ}<x<225^{\circ}\\ \color{red}\textrm{d}.&90^{\circ}<x<180^{\circ}\: \: \textrm{atau}\: \: 270^{\circ}<x<360^{\circ}\\ \textrm{e}.&180^{\circ}<x<225^{\circ}\: \: \textrm{atau}\: \: 225^{\circ}<x<360^{\circ} \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{d}\\ &\begin{aligned}&f(x)=\displaystyle \frac{1}{2}\sin 2x\\ &f'(x)=\cos 2x\Rightarrow f''(x)=-2\sin 2x\\ &\color{black}\textrm{Syarat belok}\: \: f''(x)=0\\ &-2\sin 2x=0\Leftrightarrow \sin 2x=0\\ &\Leftrightarrow \sin 2x=\sin 0^{\circ}\\ &\Leftrightarrow 2x=0^{\circ}+k.360^{\circ}\: \: \textrm{atau}\: \: 2x=180^{\circ}+k.360^{\circ}\\ &\Leftrightarrow x=0^{\circ}+k.180^{\circ}\: \: \textrm{atau}\: \: x=90^{\circ}+k.180^{\circ}\\ &\Leftrightarrow \color{red}x=0^{\circ},\: x=90^{\circ} \: ,\: x=180^{\circ}\: \: \textrm{dan}\: \: x=270^{\circ}\\ &\qquad \color{red}\textrm{serta}\: \: x=360^{\circ}\\ &\bullet \color{red}\textrm{Selang}\: \: 0^{\circ}<x<90^{\circ},\: \: \color{black}\textrm{misal}\: \: x=45^{\circ}\\ &\Rightarrow \Rightarrow f''=-2\sin 2\left ( 45^{\circ} \right )=-2<0\\ &\qquad \color{black}\textrm{pada selang ini kurva cekung ke bawah}\\ &\bullet \color{red}\textrm{Selang}\: \: 90^{\circ}<x<180^{\circ},\: \: \color{black}\textrm{misal}\: \: x=135^{\circ}\\ &\Rightarrow \Rightarrow f''=-2\sin 2\left ( 135^{\circ} \right )=2>0\\ &\qquad \color{black}\textrm{pada selang ini kurva cekung ke atas}\\ &\bullet \color{red}\textrm{Selang}\: \: 180^{\circ}<x<270^{\circ},\: \: \color{black}\textrm{misal}\: \: x=225^{\circ}\\ &\Rightarrow \Rightarrow f''=-2\sin 2\left ( 225^{\circ} \right )=-2<0\\ &\qquad \color{black}\textrm{pada selang ini kurva cekung ke bawah}\\ &\bullet \color{red}\textrm{Selang}\: \: 270^{\circ}<x<360^{\circ},\: \: \color{black}\textrm{misal}\: \: x=315^{\circ}\\ &\Rightarrow \Rightarrow f''=-2\sin 2\left ( 315^{\circ} \right )=2>0\\ &\qquad \color{red}\textrm{pada selang ini kurva cekung ke atas} \end{aligned} \end{array}$
$\begin{array}{ll}\\ 87.&\textrm{Diketahui fungsi}\: \: f(x)=\cos ^{2}x-\sin ^{2}x\: \: \textrm{dengan}\\ &0<x<2\pi \: .\: \textrm{Kurva akan cekung ke bawah}\\ &\textrm{pada interval}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&0<x<\displaystyle \frac{\pi }{2}\\ \textrm{b}.&\displaystyle \frac{\pi }{4}<x<\frac{3\pi }{4}\: \: \textrm{atau}\: \: \displaystyle \frac{5\pi }{4}<x<\frac{7\pi }{4}\\ \color{red}\textrm{c}.&\displaystyle \frac{3\pi }{4}<x<\frac{5\pi }{4}\: \: \textrm{atau}\: \: \displaystyle \frac{7\pi }{4}<x<2\pi \\ \textrm{d}.&\displaystyle \frac{7\pi }{4}<x<2\pi \\ \textrm{e}.&\displaystyle \frac{5\pi }{4}<x<2\pi \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{c}\\ &\begin{aligned}&f(x)=\color{red}\cos ^{2}x-\sin ^{2}x\color{blue}=\cos 2x\\ &f'(x)=-2\sin 2x\Rightarrow f''(x)=-4\cos 2x\\ &\color{black}\textrm{Syarat belok}\: \: f''(x)=0\\ &-4\cos 2x=0\Leftrightarrow \cos 2x=0\\ &\Leftrightarrow \cos 2x=\cos \displaystyle \frac{\pi }{2}\\ &\Leftrightarrow 2x=\pm \displaystyle \frac{\pi }{2}+k.2\pi \: \: \Leftrightarrow \: \: x=\displaystyle \frac{\pi }{4}+k.\pi \\ &\Leftrightarrow \color{red}x=\displaystyle \frac{\pi }{4},\: x=\frac{3\pi }{4} \: ,\: x=\frac{5\pi }{4}\: \: \color{black}\textrm{dan}\: \: \color{red}x=\frac{7\pi }{4}\\ &\qquad \color{red}\textrm{Ingat bahwa domain}\: \: 0<x<2\pi \: \: \textrm{saja}\\ &\bullet \color{red}\textrm{Selang}\: \: 0<x<\displaystyle \frac{\pi }{4},\: \: \color{black}\textrm{misal}\: \: x=30^{\circ}=\frac{\pi }{6}\\ &\Rightarrow f''(30^{\circ})=-4\cos 2\left ( 30^{\circ} \right )=-2<0\\ &\qquad \color{black}\textrm{pada selang ini kurva cekung ke bawah}\\ &\bullet \color{red}\textrm{Selang}\: \: \displaystyle \frac{\pi }{4}<x<\displaystyle \frac{3\pi }{4},\: \: \color{black}\textrm{misal}\: \: x=120^{\circ}=\displaystyle \frac{2\pi }{3}\\ &\Rightarrow f''(120^{\circ})=-4\cos 2\left ( 90^{\circ} \right )=2>0\\ &\qquad \color{black}\textrm{pada selang ini kurva cekung ke atas}\\ &\bullet \color{red}\textrm{Selang}\: \: \displaystyle \frac{3\pi }{4}<x<\frac{5\pi }{4},\: \: \color{black}\textrm{misal}\: \: x=210^{\circ}=\frac{7\pi }{6}\\ &\Rightarrow f''(210^{\circ})=-4\cos 2\left ( 210^{\circ} \right )=-2<0\\ &\qquad \color{black}\textrm{pada selang ini kurva cekung ke bawah}\\ &\bullet \color{red}\textrm{Selang}\: \: \displaystyle \frac{5\pi }{4}<x<\frac{7\pi }{4},\: \: \color{black}\textrm{misal}\: \: x=300^{\circ}=\displaystyle \frac{5\pi }{3}\\ &\Rightarrow f''(300^{\circ})=-4\cos 2\left ( 300^{\circ} \right )=2>0\\ &\qquad \color{black}\textrm{pada selang ini kurva cekung ke atas}\\ &\bullet \color{red}\textrm{Selang}\: \: \displaystyle \frac{7\pi }{4}<x<2\pi ,\: \: \color{black}\textrm{misal}\: \: x=330^{\circ}=\frac{11\pi }{6}\\ &\Rightarrow f''=-4\cos 2\left ( 330^{\circ} \right )=-2<0\\ &\qquad \color{red}\textrm{pada selang ini kurva cekung ke bawah} \end{aligned} \end{array}$
$\begin{array}{ll}\\ 88.&\textrm{Diketahui fungsi}\: \: f(x)=\sin ^{2}x\: \: \textrm{dengan}\\ &0<x<2\pi .\: \textrm{Kurva fungsi tersebut akan}\\ &\textrm{cekung ke bawah pada interval}\: ....\\ &\begin{array}{llll}\\ \color{red}\textrm{a}.&\displaystyle \frac{\pi }{4}<x<\frac{3\pi }{4}\: \: \textrm{atau}\: \: \frac{5\pi }{4}<x<\frac{7\pi }{4}\\ \textrm{b}.&\displaystyle \frac{\pi }{4}<x<\frac{3\pi }{4}\: \: \textrm{atau}\: \: \frac{7\pi }{4}<x<2\pi\\ \textrm{c}.&\displaystyle 0<x<\frac{\pi }{2}\: \: \textrm{atau}\: \: \frac{3\pi }{4}<x<\frac{5\pi }{4}\\ \textrm{d}.&\displaystyle \frac{\pi }{4}<x<\frac{3\pi }{4}\\ \textrm{e}.&\displaystyle 0<x<\frac{\pi }{4} \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{a}\\ &\begin{aligned}&f(x)=\color{red}\sin ^{2}x\\ &f'(x)=2\sin x\cos x=\sin 2x\\ & f''(x)=2\cos 2x\\ &\color{purple}\textrm{Syarat belok}\: \: f''(x)=0\\ &2\cos 2x=0\Leftrightarrow \cos 2x=0\\ &\Leftrightarrow \cos 2x=\cos \displaystyle \frac{\pi }{2}\\ &\Leftrightarrow 2x=\pm \displaystyle \frac{\pi }{2}+k.2\pi \: \: \Leftrightarrow \: \: x=\displaystyle \frac{\pi }{4}+k.\pi \\ &\Leftrightarrow \color{red}x=\displaystyle \frac{\pi }{4},\: x=\frac{3\pi }{4} \: ,\: x=\frac{5\pi }{4}\: \: \color{black}\textrm{dan}\: \: \color{red}x=\frac{7\pi }{4}\\ &\qquad \color{red}\textrm{Ingat bahwa domain}\: \: 0<x<2\pi \: \: \textrm{saja}\\ &\bullet \color{red}\textrm{Selang}\: \: 0<x<\displaystyle \frac{\pi }{4},\: \: \color{black}\textrm{misal}\: \: x=30^{\circ}=\frac{\pi }{6}\\ &\Rightarrow f''(30^{\circ})=2\cos 2\left ( 30^{\circ} \right )=2>0\\ &\qquad \color{black}\textrm{pada selang ini kurva cekung ke atas}\\ &\bullet \color{red}\textrm{Selang}\: \: \displaystyle \frac{\pi }{4}<x<\displaystyle \frac{3\pi }{4},\: \: \color{black}\textrm{misal}\: \: x=120^{\circ}=\displaystyle \frac{2\pi }{3}\\ &\Rightarrow f''(120^{\circ})=2\cos 2\left ( 90^{\circ} \right )=-2<0\\ &\qquad \color{black}\textrm{pada selang ini kurva cekung ke bawah}\\ &\bullet \color{red}\textrm{Selang}\: \: \displaystyle \frac{3\pi }{4}<x<\frac{5\pi }{4},\: \: \color{black}\textrm{misal}\: \: x=210^{\circ}=\frac{7\pi }{6}\\ &\Rightarrow f''(210^{\circ})=2\cos 2\left ( 210^{\circ} \right )=2>0\\ &\qquad \color{black}\textrm{pada selang ini kurva cekung ke atas}\\ &\bullet \color{red}\textrm{Selang}\: \: \displaystyle \frac{5\pi }{4}<x<\frac{7\pi }{4},\: \: \color{black}\textrm{misal}\: \: x=300^{\circ}=\displaystyle \frac{5\pi }{3}\\ &\Rightarrow f''(300^{\circ})=2\cos 2\left ( 300^{\circ} \right )=-2<0\\ &\qquad \color{black}\textrm{pada selang ini kurva cekung ke bawah}\\ &\bullet \color{red}\textrm{Selang}\: \: \displaystyle \frac{7\pi }{4}<x<2\pi ,\: \: \color{black}\textrm{misal}\: \: x=330^{\circ}=\frac{11\pi }{6}\\ &\Rightarrow f''=2\cos 2\left ( 330^{\circ} \right )=2>0\\ &\qquad \color{red}\textrm{pada selang ini kurva cekung ke atas} \end{aligned} \end{array}$
$\begin{array}{ll}\\ 89.&\textrm{Diketahui fungsi}\: \: f(x)=2\sin x-2\cos x\: \: \textrm{dengan}\\ &0<x<2\pi \: .\: \textrm{Kurva akan cekung ke atas}\\ &\textrm{pada interval}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&0<x<\displaystyle \frac{3\pi }{4}\\ \textrm{b}.&\displaystyle \frac{\pi }{4}<x <\displaystyle \frac{5\pi }{4}\\ \textrm{c}.& \displaystyle \frac{3\pi }{4}<x<2\pi \\ \textrm{d}.&0<x<\frac{\pi }{4}\: \: \textrm{atau}\: \: \displaystyle \frac{3\pi }{4}<x<\frac{5\pi }{4}\\ \color{red}\textrm{e}.&0<x<\frac{\pi }{4}\: \: \textrm{atau}\: \: \displaystyle \frac{5\pi }{4}<x<2\pi \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{e}\\ &\begin{aligned}&f(x)=\color{red}2\sin x-2\cos x\color{blue}\\ &f'(x)=2\cos x+2\sin x\\ & f''(x)=-2\sin x+2\cos x\\ &\color{black}\textrm{Syarat belok}\: \: f''(x)=0\\ &-2\sin x+2\cos x=0\Leftrightarrow \sin x=\cos x\\ &\Leftrightarrow \tan x=1\\ &\Leftrightarrow x=\displaystyle \frac{\pi }{4}+k.\pi \\ &\Leftrightarrow \color{red}x=\displaystyle \frac{\pi }{4},\: x=\frac{5\pi }{4}\\ &\qquad \color{red}\textrm{Ingat bahwa domain}\: \: 0<x<2\pi \: \: \textrm{saja}\\ &\color{black}\textrm{Sebagai gambaran saja}\\ &\bullet \color{red}\textrm{Selang}\: \: \displaystyle \frac{\pi }{4}<x<\displaystyle \frac{3\pi }{4},\: \: \color{black}\textrm{misal}\: \: x=90^{\circ}=\displaystyle \frac{\pi }{2}\\ &\Rightarrow f''(90^{\circ})=-2\sin 90^{\circ}+2\cos 90^{\circ}=-2<0\\ &\qquad \color{red}\textrm{pada selang ini kurva cekung ke bawah} \end{aligned} \end{array}$
$\begin{array}{ll}\\ 90.&\textrm{Diketahui fungsi}\: \: f(x)=\sin \left ( 3x+\displaystyle \frac{\pi }{2} \right )\\ &\textrm{dengan}\: \: 0<x<2\pi .\: \textrm{Kurva fungsi tersebut}\\ &\textrm{akan cekung ke atas pada interval}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle 0<x<\frac{\pi }{6}\: \: \textrm{atau}\: \: \frac{\pi }{2}<x<\frac{5\pi }{6}\\ \color{red}\textrm{b}.&\displaystyle \frac{\pi }{6}<x<\frac{\pi }{2}\: \: \textrm{atau}\: \: \frac{5\pi }{6}<x<\pi\\ \textrm{c}.&\displaystyle \frac{\pi }{6}<x<\frac{\pi }{2}\: \: \textrm{atau}\: \: \frac{3\pi }{4}<x<\frac{5\pi }{6}\\ \textrm{d}.&\displaystyle \frac{\pi }{6}<x<\frac{\pi }{4}\: \: \textrm{atau}\: \: \frac{3\pi }{4}<x<\frac{5\pi }{6}\\ \textrm{e}.&\displaystyle \frac{\pi }{6}<x<\frac{\pi }{4}\: \: \textrm{atau}\: \: \frac{5\pi }{6}<x<\pi \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{b}\\ &\begin{aligned}&f(x)=\sin \left ( 3x+\displaystyle \frac{\pi }{2} \right )\\ &f'(x)=3\cos \left ( 3x+\displaystyle \frac{\pi }{2} \right )\\ & f''(x)=-9\sin \left ( 3x+\displaystyle \frac{\pi }{2} \right )\\ &\color{black}\textrm{Syarat belok}\: \: f''(x)=0\\ &-9\sin \left ( 3x+\displaystyle \frac{\pi }{2} \right )=0\Leftrightarrow \sin \left ( 3x+\displaystyle \frac{\pi }{2} \right )=0\\ &\Leftrightarrow \sin \left ( 3x+\displaystyle \frac{\pi }{2} \right )=\sin 0\\ &\Leftrightarrow \left ( 3x+\displaystyle \frac{\pi }{2} \right )=0+k.2\pi \: \: \Leftrightarrow \: \: \left ( 3x+\displaystyle \frac{\pi }{2} \right )=\displaystyle \pi+k.2\pi \\ &\Leftrightarrow 3x=-\displaystyle \frac{\pi }{2}+k.2\pi \: \: \Leftrightarrow \: \: 3x=\displaystyle \frac{\pi }{2}+k.2\pi \\ &\Leftrightarrow x=-\displaystyle \frac{\pi }{6}+k.\frac{2\pi}{3} \: \: \Leftrightarrow \: \: x=\displaystyle \frac{\pi }{6}+k.\displaystyle \frac{2\pi}{3} \\ &\Leftrightarrow \color{red}x=\displaystyle \frac{\pi }{6},\: \: x=\displaystyle \frac{\pi }{2},\: x=\frac{5\pi }{6} \: ,\: x=\frac{7\pi }{6},\\ & \color{black}\textrm{dan}\: \: \color{red}x=\frac{3\pi }{2},\: \color{black}\textrm{serta}\: \: \color{red}x=\frac{11\pi}{6} \\ &\qquad \color{red}\textrm{Ingat bahwa domain}\: \: 0\leq x\leq 2\pi \: \: \textrm{saja}\\ &\color{black}\textrm{Sebagai GAMBARAN saja, diberikan 2 nilai selang}\\ &\bullet \color{red}\textrm{Selang}\: \: 0<x<\displaystyle \frac{\pi }{6},\: \: \color{black}\textrm{misal}\: \: x=15^{\circ}=\frac{\pi }{12}\\ &\Rightarrow f''(15^{\circ})=-9\sin \left ( 3\left ( \displaystyle \frac{\pi }{12} \right )+\displaystyle \frac{\pi }{2} \right )=-\displaystyle \frac{9}{2}\sqrt{2}<0\\ &\qquad \color{black}\textrm{pada selang ini kurva cekung ke bawah}\\ &\bullet \color{red}\textrm{Selang}\: \: \displaystyle \frac{\pi }{6}<x<\displaystyle \frac{\pi }{2},\: \: \color{black}\textrm{misal}\: \: x=60^{\circ}=\displaystyle \frac{\pi }{3}\\ &\Rightarrow f''(60^{\circ})=-9\sin \left ( 3\left ( \displaystyle \frac{\pi }{3} \right )+\displaystyle \frac{\pi }{2} \right )=9>0\\ &\qquad \color{red}\textrm{pada selang ini kurva cekung ke atas} \end{aligned} \end{array}$