Tampilkan postingan dengan label examples of problem solving. Tampilkan semua postingan
Tampilkan postingan dengan label examples of problem solving. Tampilkan semua postingan

Contoh Soal 12 Turunan Fungsi Trigonometri (Bagian 3)

56.Diketahui fungsif(x)=12sin2xdengan0<x<360.Kurva akan cekungke atas pada interval....a.0<x<90b.0<x<90atau180<x<270c.45<x<225d.90<x<180atau270<x<360e.180<x<225atau225<x<360Jawab:df(x)=12sin2xf(x)=cos2xf(x)=2sin2xSyarat belokf(x)=02sin2x=0sin2x=0sin2x=sin02x=0+k.360atau2x=180+k.360x=0+k.180ataux=90+k.180x=0,x=90,x=180danx=270sertax=360Selang0<x<90,misalx=45⇒⇒f=2sin2(45)=2<0pada selang ini kurva cekung ke bawahSelang90<x<180,misalx=135⇒⇒f=2sin2(135)=2>0pada selang ini kurva cekung ke atasSelang180<x<270,misalx=225⇒⇒f=2sin2(225)=2<0pada selang ini kurva cekung ke bawahSelang270<x<360,misalx=315⇒⇒f=2sin2(315)=2>0pada selang ini kurva cekung ke atas

57.Diketahui fungsif(x)=cos2xsin2xdengan0<x<2π.Kurva akan cekung ke bawahpada interval....a.0<x<π2b.π4<x<3π4atau5π4<x<7π4c.3π4<x<5π4atau7π4<x<2πd.7π4<x<2πe.5π4<x<2πJawab:cf(x)=cos2xsin2x=cos2xf(x)=2sin2xf(x)=4cos2xSyarat belokf(x)=04cos2x=0cos2x=0cos2x=cosπ22x=±π2+k.2πx=π4+k.πx=π4,x=3π4,x=5π4danx=7π4Ingat bahwa domain0<x<2πsajaSelang0<x<π4,misalx=30=π6f(30)=4cos2(30)=2<0pada selang ini kurva cekung ke bawahSelangπ4<x<3π4,misalx=120=2π3f(120)=4cos2(90)=2>0pada selang ini kurva cekung ke atasSelang3π4<x<5π4,misalx=210=7π6f(210)=4cos2(210)=2<0pada selang ini kurva cekung ke bawahSelang5π4<x<7π4,misalx=300=5π3f(300)=4cos2(300)=2>0pada selang ini kurva cekung ke atasSelang7π4<x<2π,misalx=330=11π6f=4cos2(330)=2<0pada selang ini kurva cekung ke bawah
58.Diketahui fungsif(x)=sin2xdengan0<x<2π.Kurva fungsi tersebut akancekung ke bawah pada interval....a.π4<x<3π4atau5π4<x<7π4b.π4<x<3π4atau7π4<x<2πc.0<x<π2atau3π4<x<5π4d.π4<x<3π4e.0<x<π4Jawab:af(x)=sin2xf(x)=2sinxcosx=sin2xf(x)=2cos2xSyarat belokf(x)=02cos2x=0cos2x=0cos2x=cosπ22x=±π2+k.2πx=π4+k.πx=π4,x=3π4,x=5π4danx=7π4Ingat bahwa domain0<x<2πsajaSelang0<x<π4,misalx=30=π6f(30)=2cos2(30)=2>0pada selang ini kurva cekung ke atasSelangπ4<x<3π4,misalx=120=2π3f(120)=2cos2(90)=2<0pada selang ini kurva cekung ke bawahSelang3π4<x<5π4,misalx=210=7π6f(210)=2cos2(210)=2>0pada selang ini kurva cekung ke atasSelang5π4<x<7π4,misalx=300=5π3f(300)=2cos2(300)=2<0pada selang ini kurva cekung ke bawahSelang7π4<x<2π,misalx=330=11π6f=2cos2(330)=2>0pada selang ini kurva cekung ke atas


59.Diketahui fungsif(x)=2sinx2cosxdengan0<x<2π.Kurva akan cekung ke ataspada interval....a.0<x<3π4b.π4<x<5π4c.3π4<x<2πd.0<x<π4atau3π4<x<5π4e.0<x<π4atau5π4<x<2πJawab:ef(x)=2sinx2cosxf(x)=2cosx+2sinxf(x)=2sinx+2cosxSyarat belokf(x)=02sinx+2cosx=0sinx=cosxtanx=1x=π4+k.πx=π4,x=5π4Ingat bahwa domain0<x<2πsajaSebagai gambaran sajaSelangπ4<x<3π4,misalx=90=π2f(90)=2sin90+2cos90=2<0pada selang ini kurva cekung ke bawah

60.Diketahui fungsif(x)=sin(3x+π2)dengan0<x<2π.Kurva fungsi tersebutakan cekung ke atas pada interval....a.0<x<π6atauπ2<x<5π6b.π6<x<π2atau5π6<x<πc.π6<x<π2atau3π4<x<5π6d.π6<x<π4atau3π4<x<5π6e.π6<x<π4atau5π6<x<πJawab:bf(x)=sin(3x+π2)f(x)=3cos(3x+π2)f(x)=9sin(3x+π2)Syarat belokf(x)=09sin(3x+π2)=0sin(3x+π2)=0sin(3x+π2)=sin0(3x+π2)=0+k.2π(3x+π2)=π+k.2π3x=π2+k.2π3x=π2+k.2πx=π6+k.2π3x=π6+k.2π3x=π6,x=π2,x=5π6,x=7π6,danx=3π2,sertax=11π6Ingat bahwa domain0x2πsajaSebagai GAMBARAN saja, diberikan 2 nilai selangSelang0<x<π6,misalx=15=π12f(15)=9sin(3(π12)+π2)=922<0pada selang ini kurva cekung ke bawahSelangπ6<x<π2,misalx=60=π3f(60)=9sin(3(π3)+π2)=9>0pada selang ini kurva cekung ke atas


DAFTAR PUSTAKA
  1. Noormandiri. 2017. Matematika Jilid 3 untuk SMA/MA Kelas XII Kelompok Peminatan MAtematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA
  2. Tasari, Aksin, N., Miyanto, Muklis. 2016. Matematika untuk SMA/MA Kelas XII Peminatan Matematika dan Ilmu-Ilmu Alam. Klaten. PT. INTAN PARIWARA.





Contoh Soal 11 Turunan Fungsi Trigonometri (Bagian 3)

51.Diketahuif(x)=cos22x.Jikaf(x)=asin2bx+ccos2dx,nilai untukabcd=....a.53b.23c.35d.65e.95Jawab:cf(x)=cos22xf(x)=2cos2x(sin2x)(2)=4sin2xcos2xf(x)=4cos2x.(2).cos2x4sin2x.(sin2x)(2)=8sin22x8cos22xBandingkan denganf(x)=asin2bx+ccos2dxmaka,a=8,b=2,c=8,d=2Jadi,abcd=8282=35

52.Diketahuif(x)=cosxsinx+cosx.Jikaf(x)=mcos2x(sin2x+n)2,nilai darim.n=....a.2b.4c.5d.8e.10Jawab:af(x)=cosxsinx+cosxf(x)=sinx(sinx+cosx)cosx(cosxsinx)(sinx+cosx)2=sin2xcos2x+0sin2+2sinxcosx+cos2x=11+sin2xf(x)=0((1).2cos2x)(sin2x+1)2=2cos2x(sin2x+1)2Bandingkan dengan yang diketahuif(x)=mcos2x(sin2x+n)2{m=2n=2Jadi,m.n=2.1=2

53.Salah satu titik belok dari fungsif(x)=sin2xdengan0x2πadalah....a.(π4,0)b.(π2,0)c.(π4,1)d.(π2,1)e.(π,1)Jawab:bf(x)=sin2xf(x)=2cos2xf(x)=4sin2xSyarat belokf(x)=04sin2x=0sin2x=0sin2x=sin02x=0+k.2πatau2x=π+k.2πx=0+k.πataux=π2+k.πx=0,x=π2,x=π,x=3π2ataux=2πf(π2)=sin2(π2)=0(π2,0)f(π)=sin2(π)=0(π,0)f(3π2)=sin2(3π2)=0(3π2,0)

54.Diketahui fungsif(x)=3cos2x+1dengan0<x<2π.Salah satu koordinat titik belokdari fungsif(x)tersebut....a.(π2,2)b.(2π3,52)c.(3π2,4)d.(5π4,1)e.(5π3,52)Jawab:df(x)=3cos2x+1untuk0<x<2πf(x)=6sin2xf(x)=12cos2xSyarat belokf(x)=012cos2x=0cos2x=0cos2x=cosπ22x=±π2+k.2πx=±π4+k.πx=π4,x=3π4,x=5π4ataux=7π4f(π4)=3cos2(π4)+1=1(π4,1)f(3π4)=3cos2(3π4)+1=1(3π4,1)f(5π4)=3cos2(5π4)+1=1(5π4,1)f(7π4)=3cos2(7π4)+1=1(7π4,1)
55.Diketahui fungsif(x)=sin2x+2dengan0<x<2π.Salah satu koordinat titik belokdari fungsif(x)tersebut....a.(π4,52)b.(π3,114)c.(π,2)d.(4π3,114)e.(11π6,94)Jawab:af(x)=sin2x+2untuk0<x<2πf(x)=2sinxcosxf(x)=sin2xf(x)=2cos2xSyarat belokf(x)=02cos2x=0cos2x=0cos2x=cosπ22x=±π2+k.2πx=±π4+k.πx=π4,x=3π4,x=5π4ataux=7π4f(π4)=sin2(π4)+2=52(π4,52)f(3π4)=sin2(3π4)+2=52(3π4,52)f(5π4)=sin2(5π4)+2=52(5π4,52)f(7π4)=sin2(7π4)+2=52(7π4,52)








Contoh Soal 10 Turunan Fungsi Trigonometri (Bagian 3)

46.Turunan kedua darif(x)=x3sin3xadalah... .a.6x2+9sin3xb.3x2+6sin3xc.3x9sin3xd.6x+9sin3xe.9x6sin3xJawab:df(x)=x3sin3xf(x)=3x23cos3xf(x)=6x+9sin3x

47.Diketahui fungsig(x)=1cosxsinx.Nilaiturunan kedua saatx=π4adalah....a.2+4b.223c.22+3d.324e.32+4Jawab:dg(x)=1cosxsinxg(x)=sinx(sinx)cosx(1cosx)sin2x=sin2xcosx+cos2xsin2x=1cosxsin2xg(x)=sinx(sin2x)2sinxcosx(1cosx)sin4x=sinx(sin2x)sin2x(1cosx)sin4x=sinπ4(sin2π4)sin2π4(1cosπ4)sin4π4=(12)(12)21.(1(12))(12)4=12121+1214×44=224+421=624=324

48.Turunan kedua fungsif(x)=sin2xcos2xadalahf(x)=....a.6sin2xb.4cos2xc.2cos2xd.2cos2xe.4cos2xJawab:bf(x)=sin2xcos2xf(x)=2sinxcosx2cosx(sinx)=2sinxcosx+2sinxcosx=2(2sinxcosx)=2sin2xf(x)=2.2cos2x=4cos2x

49.Diketahuif(x)=sinx.Jikaf(x)adalah turunan keduafungsif,makanilai darif(π2)adalah....a.12b.14c.0d.14e.12Jawab:af(x)=sinx=sin12xf(x)=12sin12x.cosx=cosx2sin12xf(x)=sinx(2sin12x)cosx(2.12sin12x.cosx)4sinx=2sinxsinxcos2xsinx4sinxf(π2)=2sinπ2.sinπ2cos2π2sinπ24sinπ2=2.1.104.1=12

50.Jikaf(x)=tan2(3x2)makaf(x)=....a.36tan2(3x2)sec2(3x2)18sec4(3x2)b.36tan2(3x2)sec2(3x2)+18sec2(3x2)c.36tan2(3x2)sec2(3x2)+18sec4(3x2)d.18tan2(3x2)sec2(3x2)+36sec4(3x2)e.18tan2(3x2)sec2(3x2)+18sec4(3x2)Jawab:cf(x)=tan2(3x2)f(x)=2tan(3x2)sec2(3x2)(3)=6tan(3x2)sec2(3x2)f(x)=6sec2(3x2).(3)sec2(3x2)+6tan(3x2).2sec(3x2).sec(3x2)tan(3x2)(3)=18sec4(3x2)+36tan2(3x2)sec2(3x2)

Contoh Soal 9 Turunan Fungsi Trigonometri (Bagian 2)

41.Sebuah mesin diprogram untuk dapatbegerak tiap waktu mengikuti posisix=2cos3tdany=2cos2tdi manax,ydalamcm,dantdalam detikJika kecepatakan dirumuskan denganv=(vx)2+(vy)2,maka nilaivsaatt=30detikadalah...cm/detika.43b.211c.210d.6e.42Jawab:aDiketahui Kecepatan gerak mesin{x=2cos3xdxdt=6sin3ty=2cos2xdydt=4sin2tMaka kecepatan mesin saatt=30v=(vx)2+(vy)2v=(6sin3t)2+(4sin2t)2=(6sin3(30))2+(4sin2(30))2=(6(1))2+(4(123))2=36+12=48=16.3=43

42.Sebuah benda duhubungkan denganpegas dan bergerak sepanjang sumbuX dengan formula persamaan:x=sin2t+3cos2tJarak terjauh dari titikOyang dapatdicapai oleh benda tersebut adalah....a.1b.2c.3d.4e.5Jawab:bDiketahui gerak benda yang bergerakmengikuti formula:x=sin2t+3cos2tJarak terjauh dicapai saatx=dxdt=0x=2cos2t23sin2t=02cos2t=23sin2tsin2tcos2t=133tan2t=tan302t=30+k.180t=15+k.90{k=0,t=15k=1,t=105k=2,t=195k=3,t=285k=4,t=375dstAmbilt=15,maka nilaixnya adalah:x=sin2t+3cos2tx=sin2(15)+3cos2(15)x=12+3(123)x=12+32=2

43.Pada kurvay=sinxdibuatgaris singgung melalui titik(2π3,k)garis singgung tersebut memotongsumbu-X di A dan sumbu-Y di B.LuasAOBadalah....a.(3π+23)236b.(3π+33)236c.(3π+23)216d.(3π+23)218e.(3π+33)218Jawab:bPerhatikan ilustrasi berikut


.Misalkan koordinat titikP(2π3,k)maka,xp=2π3,yp=k=sin2π3=123Persamaan garis singgung di titik P:y=mxp(xxp)+yp{(2π3,k)=(2π3,123)mxp=dydx=y=cosxmxp=cos(2π3)=12Sehingga persamaan garis singgungnyay=(12)(x2π3)+1232y=x+2π3+123memotong sumbu-X, makayA=02yA=xA+2π3+30=xA+2π3+3xA=2π3+3memotong sumbu-Y, makaxB=02yB=xB+2π3+32yB=0+2π3+3yB=π3+123LuasAOB=[AOB]=xA.yB2=(2π3+3).(π3+123)2=16(2π+33).16(2π+33)=136(2π+33)2

44.Sebuah wadah penampung air hujanmemiliki ukuran sisi samping 3 m dansisi horisontal juga 3 m. Sisi sampingmembentuk sudutθ(0θπ2)dengan garis vertikal (lihat gambar)Nilaiθsupaya wadah dapat menampungair hujan maksimum adalah....
.a.π3b.π4c.π5d.π6e.π8Jawab:aSupaya memuat dapat maksimummaka luas penampang haruslahMAKSIMUM, yaitu
gambar 1
gambar 2
.Luas penampang=Luas Trapesiumdengan{t=3sinθn=3cosθLuas Penampang=12(sisi sejajar)×tL=12(6+2n)×tL=(3+n)×tL=(3+3cosθ)×3sinθL=9sinθ+9sinθcosθL=9sinθ+92sin2θSuapa luas penampangMAKSIMUMmakaL=dLdθ=0L=9cosθ+9cos2θ=09cosθ+9cos2θ=09cosθ+9(2cos2θ1)=02cos2θ+cosθ1=0(cosθ+1)(2cosθ1)=0cosθ=1atau2cosθ=1cosθ=1ataucosθ=12cosθ=cosπataucosθ=cosπ3θ=πatauθ=π3

45.Seseorang melempar bola dari atapsebuah rumah. Ketinggian bola saatt(detik)dinyatakan dengan persamaanh(t)=5+cos2πt.Kecepatan boladitentukan dengan formulav=dhdtBesar kecepatan bola saatt=0,25detik adalah....a.0b.πc.2πd.3πe.4πJawab:bDiketahuih(t)=5+cos2πt.makav=dhdt=2cosπt(sinπt).(π)v=πsin2πtSaatt=0,25=14,makabesar kecepatannya adalah:v=πsin2π(14)=πsinπ2=πTanda negatif menunjukkanarah kecepatan ke bawahKarena kecepatan merupakan salahsatu besaranVEKTOR

DAFTAR PUSTAKA
  1. Kanginan, M., Nurdiansyah, H., & Akhmad G. 2016. Matematika untuk Siswa SMA/MA Kelas XII Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Bandung: YRAMA WIDYA
  2. Noormandiri. 2017. Matematika Jilid 3 untuk SMA/MA Kelas XII Kelompok Peminatan MAtematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA
  3. Sembiring, S., Zulkifli, M., Marsito, & Rusdi, I. 2016. Matematika untuk Siswa SMA/MA Kelas XII Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Bandung: SEWU









Contoh Soal 8 Turunan Fungsi Trigonometri (Bagian 2)

36.Titik stasioner fungsif(x)=cos3xpada0xπadalah....a.(0,1),(π4,1),(π3,1),dan(π2,1)b.(0,1),(π3,1),(π2,1),dan(π,1)c.(π6,1),(π3,1),(π2,1),dan(2π3,1)d.(π6,1),(π3,1),(π2,1),dan(2π3,1)e.(0,1),(π3,1),(2π3,1),dan(π,1)Jawab:eDiketahuif(x)=cos3xf(x)=3sin3xStasioner fungsifsaatf(x)=0maka,sin3x=0sin3x=0sin3x=sin03x=0+k.2πatau3x=π+k.2πx=k.2π3ataux=π3+k.2π3k=0x=0ataux=π3k=1x=2π3ataux=πSekarang kita tentukan nilai dan titiknyax=0f(0)=cos3(0)=1(0,1)x=π3f(π3)=cos3(π3)=cosπ=1(π3,1)dan seterusnya

37.Titik stasioner fungsif(x)=sin(2xπ6)pada0xπadalah....a.(0,1)dan(π6,1)b.(π6,1)dan(π3,1)c.(π4,1)dan(π2,1)d.(π3,1)dan(5π6,1)e.(π2,1)dan(π,1)Jawab:dDiketahuif(x)=sin(2xπ6)f(x)=2cos(2xπ6)Stasioner fungsifsaatf(x)=0maka,2cos(2xπ6)=0cos(2xπ6)=0cos(2xπ6)=cosπ2(2xπ6)=±π2+k.2πx=π12±π4+k.π{x=π3+k.πx=π6+k.πk=0{x=π3x=π6(tm)k=1{x=4π3tmx=5π6Sekarang kita tentukan nilai dan titiknyax=π3f(π3)=sin(2.π3π6)=sinπ2=1=1(π3,1)x=5π6f(5π6)=sin(2.5π6π6)=sin3π2=1(5π6,1)

38.Nilaixpada titik stasionerfungsif(x)=x+sinxuntuk0x360adalah....a.90b.135c.150d.180e.360Jawab:dDiketahuif(x)=x+sinxf(x)=1+cosxStasioner fungsifsaatf(x)=0maka,1+cos=0cosx=1cosx=cos180x=±180+k.360k=0x={180mungkin180tidak mungkink=1x={540tidak mungkin180mungkin

39.Nilaiypada titik stasionerfungsif(x)=4cosx+cos2xuntuk0x360adalah....a.5dan3b.4dan2c.3dan5d.2dan4e.3dan5Jawab:cDiketahuif(x)=4cosx+cos2xf(x)=4sinx2sin2xStasioner fungsifsaatf(x)=0maka,4sinx2sin2x=04sinx4sinxcosx=04sinx(1+cosx)=0sinx(1+cosx)=0sinx=0atau1+cosx=0sinx=0ataucosx=1sinx=sin0ataucosx=cos180x={0+k.360180+k.360ataux={180+k.360180+k.360k=0x=0atau180Nilaiynyax=0f(0)=4cos0+cos2(0)=4+1=5x=180f(180)=4cos180+cos2(180)=4+1=3

40.Nilai stasioner fungsif(x)=sinx2cosxuntuk0x2πadalah....a.(π2,12)dan(π2,12)b.(π3,123)dan(π3,123)c.(π3,133)dan(2π3,133)d.(π3,133)dan(5π3,133)e.(π4,143)dan(3π4,143)Jawab:dDiketahuif(x)=sinx2cosxf(x)=2cosx1(2cosx)2Stasioner fungsifsaatf(x)=0maka,2cosx1(2cosx)2=02cosx1=0cosx=12cosx=cosπ3x=±π3+k.2πk=0x=±π3x={π3memenuhiπ3tidak memenuhik=1x=±π3+2πx={7π3tidak memenuhi5π3memenuhiTitiknya adalahx=π3f(π3)=sinπ32cosπ3=123212=133(π3,133)x=5π3f(5π3)=sin5π32cos5π3=123212=133(5π3,133)


Contoh Soal 7 Turunan Fungsi Trigonometri (Bagian 2)

31.Fungsif(x)=sinxcosxdengan0<x<2πnaik pada interval....a.0<x<π4b.π4<x<2πc.3π4<x<7π4d.0<x<3π4atau7π4<x<2πe.0<x<π4atau3π4<x<2πJawab:dDiketahuif(x)=sinxcosxFungsifnaik, jikaf(x)>0Selanjutnyaf(x)=cosx+cosx=0sinx=cosxsinxcosx=1tanx=1tanx=tan3π4x=3π4±k.π k=0x=3π4k=1x=3π4±π=7π4k=2x=3π4±2π=tm++++03π47π42πambil titik ujix=12πuntukx=12πf(12π)=cos12π+sin12π=0+1=1(positif)untukx=32πf(32π)=cos32π+sin32π=01=1(negatif)untukx=116πf(116π)=cos116π+sin116π=12312(positif)

32.Fungsif(x)=sin2xdengan0<x<2πnaik pada interval....a.π2<x<πatau3π2<x<2πb.2π3<x<πc.0<x<π2atauπ<x<3π2d.4π3<x<2πe.π3<x<πatau4π3<x<2πJawab:cDiketahuif(x)=sin2xFungsifnaik, jikaf(x)>0Selanjutnyaf(x)=2sinxcosx=sin2x=0sin2x=0sin2x=sin02x=±k.2πatau2x=π±k.2πx=±k.πataux=π2±k.πk=0x=0ataux=π2k=1x=πataux=π2+π=3π2k=2x=2πataux=π2+2π=52π(tm)++++0π2π3π22πambil titik ujix=16πuntukx=16πf(16π)=sin2(16π)=sin13π=12(positif)untukx=34πf(34π)=sin2(34π)=1(negatif)

33.Fungsif(x)=cos22xuntuk0<x<360turun pada interval....a.45<x<90b.135<x<180c.225<x<270d.270<x<300e.315<x<360Jawab:df(x)=cos22xFungsifturun, jikaf(x)<0f(x)=2cos2x(sin2x)(2)=2sin4xSelanjutnya2sin4x=0sin4x=0sin4x=sin0{4x=0+k.360x=k.904x=180+k.360x=45+k.90k=0x=0ataux=45k=1x=90ataux=135k=2x=180ataux=225k=3x=270ataux=315k=4x=360ataux=405(tm)Gunakan titik uji padax=30untukf(30)=2sin4(30)=3(negatif)Gunakan titik uji padax=60untukf(60)=2sin4(60)=3(positif)Gunakan titik uji padax=120untukf(120)=2sin4(120)=3(negatif)Gunakan titik uji padax=150untukf(150)=2sin4(150)=3(positif)dan seterusnya...++++04590135180++++180225270315360

34.(SBMPTN 2015)Fungsif(x)=2sin2x+x32pada0<x<πturun pada interval....a.5π12<x<11π12b.π12<x<5π12c.2π3<x<5π6d.3π4<x<πe.3π4<x<3π2Jawab:cDiketahuif(x)=2sin2x+x32Fungsifturun, jikaf(x)<0f(x)=sin2x+123sin2x+x32=0sin2x+123=0sin2x=123sin2x=sin4π32x=4π3+k.2πatau2x=π4π3+k.2πx=2π3+k.πataux=π6+k.πk=0x=2π3ataux=π6(tm)k=1x=5π3ataux=5π6Gunakan titik uji padax=π2=90untukf(π2)=sin2(π2)+123sin2(π2)+(π2)32=+(positif)Gunakan titik uji padax=3π4=135untukf(3π4)=sin2(3π4)+123sin2(3π4)+(3π4)32=(negatif)++02π35π6

35.Fungsif(x)=sin2x+x2denganx>0turun pada interval....a.5π12<x13π12b.7π12<x<11π12c.π12<x<5π12d.7π6<x13π6e.7π6<x11π6Jawab:bDiketahuif(x)=sin2x+x2Fungsifturun, jikaf(x)<0f(x)=sin2x+122sin2x+x2=0sin2x+12=0sin2x=12sin2x=sin7π62x=7π6+k.2πatau2x=π7π6+k.2πx=7π12+k.πataux=π12+k.πk=0x=7π12ataux=π12(tm)k=1x=19π12ataux=11π12Gunakan titik uji padax=π2=90untukf(π2)=sin2(π2)+12sin2(π2)+(π2)2=+(positif)Gunakan titik uji padax=3π4=135untukf(3π4)=sin2(3π4)+12sin2(3π4)+(3π4)2=(negatif)++07π1211π12

Contoh Soal 6 Turunan Fungsi Trigonometri (Bagian 2)

25.Persamaan garis singgung pada kurvay=3sinxpada titik yang berabsisπ3adalah....a.y=23(xπ3)223b.y=23(xπ3)+223c.y=32(xπ3)332d.y=32(xπ3)+332e.y=32(xπ3)322Jawab:dy=3sinx,saatx0=π3y0=3sin(π3)=3(123)=332kita cari gradienmsaaty,yaitu:m=y=3cosx,saatx0=π3m=3cos(π3)=3(12)=32Persamaan garis singgungnya adalah:y=m(xx0)+y0y=32(xπ3)+332

26.Kurvay=sinx+cosxuntuk0<x<πmemotong sumbu Xdi titik A. Persamaan garissinggung di titik A adalah....a.y=2(xπ4)b.y=2(xπ2)c.y=2(x3π4)d.y=2(xπ4)e.y=2(x3π4)Jawab:cKurva memotong sumbu Xdi titik A, berartiy=0sinx+cosx=0sinx=cosxsinxcosx=1tanx=1tanx=tan(3π4)x=3π4Jadi, titik A-nya:(3π4,0)dan nilai gradienm=y,yaitu:m=cosxsinxm=cos(3π4)sin(3π4)m=122122=2Persamaan garis singgung di A:y=m(xx0)+y0y=2(x3π4)+0y=2(x3π4)

27.Persamaan garis singgung padakurvay=sec2xpada titik yangberabsisπ3adalah....a.y=83(xπ3)4b.y=83(xπ3)+4c.y=83(xπ3)4d.y=83(xπ3)+4e.y=43(xπ3)4Jawab:by=sec2x,saatx0=π3y0=sec2(π3)=(2)2=4kita cari gradienmsaaty,yaitu:m=y=2sec2xtanx,saatx0=π3m=2sec2(π3)tan(π3)=2(4)3=83Persamaan garis singgungnya adalah:y=m(xx0)+y0y=83(xπ3)+4

28.Kurva berikut yang memilikigaris singgung dengan gradien43adalah....a.y=2sinxpada titik(π3,3)b.y=cos2xpada titik(π12,12)c.y=tanxpada titik(π,0)d.y=2secxpada titik(π3,2)e.y=cotxpada titik(π4,1)Jawab:day=2sinxm=2cosπ3y=2cosxm=2.12=1by=cos2xm=2sin2(π12)y=2sin2xm=2.12=1cy=tanxm=sec2(π)y=sec2xm=(1)2=1dy=2secxm=2sec(π3)tan(π3)y=2secxtanxm=2.2.3=43ey=cotxm=csc2(π4)y=csc2xm=(2)2=2

29.Persamaan garis singgung padakurvay=secxdi titik yangberabsisπ4adalah....a.y=3x3π4+3b.y=3x+3π4+3c.y=2x2π4+2d.y=2x+2π4+2e.y=2x2π4+3Jawab:cy=secx,saatx0=π4y0=sec(π4)=2kita cari gradienmsaaty,yaitu:m=y=secxtanx,saatx0=π4m=sec(π4)tan(π4)=2.1=2Persamaan garis singgungnya adalah:y=m(xx0)+y0y=2(xπ4)+2y=2x2π4+2

30.Persamaan garis singgung padakurvay=sinx+cosxdi titik yangberabsisπ2akan memotong sumbuY dengan ordinatnya berupa....a.π2+1b.π21c.1π2d.2+π2e.2π2Jawab:ay=sinx+cosx,saatx0=π2y0=sin(π2)+cos(π2)=1+0=1kita cari gradienmsaaty,yaitu:m=cosxsinxm=cos(π2)sin(π2)m=01=1Persamaan garis singgungnya adalah:y=m(xx0)+y0y=1(xπ2)+1y=x+π2+1Ordinat garis singgungnya saatmemotong sumbu-Y adalah:x=0,makay=0+π2+1=π2+1