Lanjutan 2 Distribusi Normal

D. Menentukan nilai k (batas interval)

Penentuan batas ini adalah kebalikan dari pencarian nilai luasan di bawah kurva

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Dengan bantuan tabel distribusi normal}\\ &\textrm{tentukan nilai}\: \: k\: \: \textrm{pada}\: \: P(Z\leq k)=0,9834\\\\ &\textbf{Jawab}:\\ &\begin{aligned}P(Z\leq k)&=P(Z\leq 0)+P(0\leq Z\leq k)\\ &=0,9834> 0,5\\ 0,9834&=0,5+P(0\leq Z\leq k)\\ P(0\leq Z\leq k)&=0,9834-0,5=0,4834\\ &=P(0\leq Z\leq \color{red}2,13\color{black})\\ \therefore \quad k&=\color{red}2,13 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Dengan bantuan tabel distribusi normal}\\ &\textrm{tentukan nilai}\: \: k\: \: \textrm{pada}\: \: P(Z\geq k)=0,3669\\\\ &\textbf{Jawab}:\\ &\begin{aligned}P(0\leq Z\leq \infty )&=P(0\leq Z\leq k)+P(k\leq Z\leq \infty )\\ 0,5&=P(0\leq Z\leq k)+0,3669\\ P(0\leq Z\leq k)&=0,5-0,3669=0,1331\\ &=P(0\leq Z\leq \color{red}0,34\color{black})\\ \therefore \quad k&=\color{red}0,34 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 3.&\textrm{Dengan tabel distribusi normal, tentukan}\\ &\textrm{nilai}\: \: k\: \: \textrm{pada}\: \: P(-k\leq Z\leq k)=0,9854\\\\ &\textbf{Jawab}:\\ &\begin{aligned}P(-k\leq Z\leq k)&=P(-k\leq Z\leq 0)+P(0\leq Z\leq k)\\ &=2\times P(0\leq Z\leq k)\\ 0,9854&=2\times P(0\leq Z\leq k)\\ P(0\leq Z\leq k)&=\displaystyle \frac{0,9854}{2}=0,4972\\ &=P(0\leq Z\leq \color{red}2,77\color{black})\\ \therefore \quad k&=\color{red}2,77 \end{aligned} \end{array}$.

E. Pendekatan distribusi binomial dengan distribusi normal

Pada kasus distribusi binomial (distribusi Bernoulli) terdapat jumlah sampel yang besar, misalkan untuk $n=\color{red}60$, maka penghitungan dengan menggunakan metode ini akan memakan waktu yang lama. Penghitungan yang lebih ringkas dengan tingkat ketelitian hasil yang baik adalah dapat kita gunakan penghitungan dengan distribusi normal (distibusi Gauss) dengan syarat  $Np\geq 5$  dan  $N(1-p)\geq 5$.

$\begin{array}{|c|c|l|l|}\hline \textrm{Notasi}&\textrm{Dibaca}&\textrm{Istilah}&\textrm{Rumus}\\\hline \mu &\textrm{mu}&\textrm{rata-rata}&\mu =Np\\\hline \sigma ^{2}&&\textrm{Variansi}&\sigma ^{2}=Npq\\\hline \sigma &\textrm{sigma}&\textrm{simpangan baku}&\sigma =\sqrt{Npq}\\\hline \end{array}$.

Dengan

$\begin{aligned}&\color{red}\textrm{Dengan rumus distribusi binomial}\\ &P(X=\textrm{x})=b(\textrm{x};n;p)\\ &\qquad\qquad\: =\displaystyle \frac{n!}{\textrm{x}!.(n-\textrm{x})!}.p^{\textrm{x}}.q^{n-\textrm{x}}=\begin{pmatrix} n\\ \textrm{x} \end{pmatrix}..p^{\textrm{x}}.q^{n-\textrm{x}}\\ &\color{red}\textrm{Dengan rumus distribusi normal}\\ &\textrm{nilai}\: \: Z-\textrm{score, untuk x adalah}\: :\: Z=\displaystyle \frac{\textrm{x}-\mu }{\sigma } \end{aligned}$.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Dari 64 kali percobaan melempar sebuah}\\ &\textrm{uang logam peubah acak}\: \: X\: \: \textrm{menyatakan}\\ &\textrm{banyak kemunculan sisi angka, tentukan}\\ &\textrm{a}.\quad \textrm{mean}\\ &\textrm{b}.\quad \textrm{standar deviasi atau simpangan baku}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Misal}\: p=\textrm{peluang kejadian muncul angka}\\ &p=\color{red}\displaystyle \frac{1}{2}\color{black},\: \: \textrm{maka}\: \:  q=1-p=1-\displaystyle \frac{1}{2}=\color{blue}\frac{1}{2}\\ &\textrm{dengan}\: \:  N=64\\ &\textrm{maka}\\ &\textrm{a}.\quad\mu =N.p=64\times \displaystyle \frac{1}{2}=\color{red}32\\ &\textrm{b}.\quad \sigma  =\sqrt{N.p.q}=\sqrt{64\times \displaystyle \frac{1}{2}\times \frac{1}{2}}=\sqrt{16}\\ &\qquad\: \: =\color{red}4 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Tentukan probabilitas perolehan 5 sisi angka}\\&\textrm{pada pelemparan sebuah uang logam sebanyak }\\ &\textrm{12 kali}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\color{red}\textrm{Dengan rumus distribusi binomial}\\ &\textrm{Diketahui}\: \: n=12,\: \textrm{x}=5,\: \textrm{dan}\: \: p=\displaystyle \frac{1}{2},\: q=1-p\\ &P(X=\textrm{x})=b(\textrm{x};n;p)\\ &\qquad\qquad\: =\displaystyle \frac{n!}{\textrm{x}!.(n-\textrm{x})!}.p^{\textrm{x}}.q^{n-\textrm{x}}=\begin{pmatrix} n\\ \textrm{x} \end{pmatrix}..p^{\textrm{x}}.q^{n-\textrm{x}}\\ &P(\textrm{x}=5)=b(5;12;\displaystyle \frac{1}{2})\\ &\qquad\qquad\: =\begin{pmatrix} 12\\ 5 \end{pmatrix}.\left ( \displaystyle \frac{1}{2} \right )^{5}.\left ( 1-\displaystyle \frac{1}{2} \right )^{12-5}\\ &\qquad\qquad\: =\displaystyle \frac{12!}{5!.7!}.\left ( \displaystyle \frac{1}{2} \right )^{12}\\ &\qquad\qquad \: =\displaystyle \frac{792}{4048}=\color{red}0,1934\quad \color{black}(\textrm{Pembulatan 4D}) \end{aligned}\\ &\begin{aligned}&\color{red}\textrm{Dengan rumus distribusi normal}\\ &\mu =n.p=12.\left ( \displaystyle \frac{1}{2} \right )=6\\ &\sigma =\sqrt{npq}=\sqrt{12.\left ( \displaystyle \frac{1}{2} \right )\left ( 1-\displaystyle \frac{1}{2} \right )}=\sqrt{3}\\ &\: \: \: =1,7321\\ &\textrm{nilai}\: \: Z-\textrm{score, untuk x di antara}\\ &4,5\: \: \textrm{dan}\: \: 5,5\\ &Z_{1}=\displaystyle \frac{\textrm{x}_{1}-\mu }{\sigma }=\displaystyle \frac{4,5-6}{1,7321}=-0,87\\ &\Rightarrow P(Z=0,87)=0,3078\\ &Z_{2}=\displaystyle \frac{\textrm{x}_{2}-\mu }{\sigma }=\displaystyle \frac{5,5-6}{1,7321}=-0,29\\ &\Rightarrow P(Z=0,29)=0,1141\\ &\textrm{Luasan}\: \: 4,5\: \: \textrm{hingga}\: \: 5,5\\ &=0,3078-0,1141=\color{red}0,1937 \end{aligned}\\ &\color{blue}\textrm{Perbedaan selisihnya adalah}\\ &=0,1937-0,1934=\color{red}0,0003 \end{array}$ .

$\begin{array}{ll}\\ 3.&\textrm{Pada soal nomor 1 di atas, carilah probabilitas}\\&\textrm{mendapatakan 2 sisi angka dan probabilitas}\\ &\textrm{mendapatkan sisi angka kurang dari 50}\\\\ &\textbf{Jawab}:\\ &\begin{aligned} &\bullet \quad \textrm{untuk}\: \: x=2,\: n=64,\: \textrm{dan}\: \: p=\displaystyle \frac{1}{2},\: q=1-p\\ &P(X=\textrm{x})=b(\textrm{x};n;p)\\ &\qquad\qquad\: =\displaystyle \frac{n!}{\textrm{x}!.(n-\textrm{x})!}.p^{\textrm{x}}.q^{n-\textrm{x}}=\begin{pmatrix} n\\ \textrm{x} \end{pmatrix}..p^{\textrm{x}}.q^{n-\textrm{x}}\\ &\qquad \textrm{maka}\: \: P(X=2)=P(x=2)\\ &\qquad P(x=2)=\begin{pmatrix} 64\\ 2 \end{pmatrix}\left ( \displaystyle \frac{1}{2} \right )^{2}\left ( \displaystyle \frac{1}{2} \right )^{64-2}\\ &\qquad =\displaystyle \frac{64\times 63}{2}\times \left ( \displaystyle \frac{1}{2} \right )^{64}=\displaystyle \frac{4032}{2^{65}}\\ &\color{blue}\textbf{Alternatif 1}\\ &\bullet \quad P(X< 50)=P(x=0)+P(x=1)\\ &\qquad +P(x=2)+P(x=3)+...+P(x=49)\\ \end{aligned}\\ &\begin{aligned}&\color{blue}\textbf{Alternatif 2}\\ &\textrm{Diketahui}\: \: \mu =32,\: \: \sigma =4,\: \: \textrm{dan}\: \: x=50\\ &z=\displaystyle \frac{x-\mu }{\sigma }=\frac{50-32}{4}=\frac{18}{4}=4,5\\ &\textrm{maka nilai}\\ &P(x< 50)=P(z< 4,5)\\ &\qquad\: \: \qquad =P(z\leq 0)+P(0\leq z< 4,5)\\ &\qquad\: \: \qquad =0,5+0,4999\\ &\qquad\: \: \qquad =\color{red}0,9999 \end{aligned} \end{array}$.


DAFTAR PUSTAKA
  1. Tasari, Aksin, N., Miyanto, Muklis. 2016. Matematika untuk SMA/MA Kelas XII Peminatan Matematika dan Ilmu-Ilmu Alam. Klaten: INTAN PARIWARA.
  2. Noormandiri, B.K. 2017. Matematika Jilid 3 untuk SMA/MA Kelas XII Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA.
  3. Sari, B.-------. Pendekatan Binomial untuk Kasus Distribusi Normal. pada https://dosen.yai.ac.id/v5/dokumen/materi/030013/103_20211207093237_Pertemuan%2010_Pendekatan%20Binomial%20Untuk%20Kasus%20Distribusi%20Normal.pdf 


Tidak ada komentar:

Posting Komentar

Informasi