Fungsi Kuadrat

 $\begin{array}{|l|l|}\hline \textrm{Pengertian}&\begin{aligned}&\textrm{Suatu fungsi yang berbentuk}\\ &f(x)=ax^{2}+bx+c\\ & a,\: b,\: c,\: \in \mathbb{R},\: a\neq 0 \end{aligned}\\\hline \textrm{Grafik Fungsi}&\textrm{Keterangan}\\\hline \textrm{Titik potong sumbu x}&\textrm{Jika ada}\\\hline &\begin{aligned}&\textrm{untuk titik potong}\\ &\textrm{terhadap sumbu x }\\ &\textrm{Jika y = 0 maka }\\ &ax^{2}+bx+c=0\\ &\textrm{Selanjutnya tinggal}\\ &\textrm{menentukan nilai D}\\ &D=b^{2}-4ac\: \: \textrm{adalah}\\ &\: \: \: \: \: \: \: \: \: \textrm{nilai diskriminan}.\\ &\textrm{Jika} \: D>0\\ &\textrm{maka grafik}\\ &\textrm{memotong sumbu x}\\ &\textrm{di dua tempat berbeda}\\ &\textrm{yaitu di} \: (x_{1},0)\: \textrm{dan}\: (x_{2},0).\\ &\textrm{dan jika D = 0}\\ &\textrm{maka grafik}\\ &\textrm{ hanya menyinggung}\\ &\textrm{sumbu x di satu titik}\\ &\textrm{yaitu di }\: (x_{1},0)\\ &\textrm{dan jika}\: D<0 \\ &\textrm{maka grafik}\\ &\textrm{tidak memotong}\\ &\textrm{atau menyinggung sumbu x} \end{aligned}\\\hline \textrm{Titik potong sumbu y}&\begin{aligned}&\textrm{titik potong terhadap}\\ &\textrm{sumbu y, jika x = 0}\\ &y=f(x)=ax^{2}+bx+c\\ &y=f(0)=a(0)^{2}+b(0)+c\\ &y=c \end{aligned}\\\hline \textrm{Sumbu Simetri (SS)}&x=\displaystyle \frac{-b}{2a}\\\hline \textrm{Titik Puncak}&\left ( \displaystyle \frac{-b}{2a},\displaystyle \frac{D}{-4a} \right )\\\hline \textrm{Posisi grafik}&\textrm{Jika}\: a>0\: \textrm{maka}\\ &\textrm{grafik terbuka ke atas}\\ &\textrm{Dan jika nilai}\: a<0\: \textrm{maka}\\ &\textrm{grafik terbuka ke bawah}\\\hline \end{array}$.

Selanjutnya cara membuat grafik fungsi kudratnya adalah sebagai berikut:

$\begin{array}{|c|c|}\hline \textrm{Jika memotong sumbu}-\textrm{X}&\textrm{Jika menyinggung sumbu}-\textrm{X}\\ \textrm{di titik}\: \left ( x_{1},0 \right )\: \textrm{dan}\: \left ( x_{2},0 \right )&\textrm{di titik}\: \left ( x_{1},0 \right )\: \textrm{dan melalui}\\ \textrm{dan melalui sebuah titik lain}&\textrm{sebuah titik lain} \\\hline &\\ y=f(x)=a\left ( x-x_{1} \right )\left ( x-x_{2} \right )&y=f(x)=a\left ( x-x_{1} \right )^{2}\\ &\\\hline \textrm{Jika grafik fungsi itu melalui}&\textrm{Jika grafik fungsi itu melalui}\\\hline \textrm{Titik puncak}\: \: P\left ( x_{p},y_{p} \right )\: \textrm{dan}&\textrm{tiga buah titik yaitu}\: \left ( x_{1},y_{1} \right )\\ \textrm{sebuah titik lain}&\left ( x_{2},y_{2} \right )\: \: \textrm{dan}\: \: \left ( x_{3},y_{3} \right )\\\hline &\\ y=f(x)=a\left ( x-x_{p} \right )^{2}+y_{p}&y=f(x)=ax^{2}+bx+c\\ &\\\hline \end{array}$.

$\LARGE{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Jika}\: \: f\: \: \textrm{adalah fungsi linear dengan}\\ & f(2)-f(-2)=8,\\ & \textrm{maka nilai dari}\: \: f(4)-f(-2)\: \: \textrm{adalah}\: ....\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa}:\\ &f(x)=ax+b\\ &f(2)-f(-2)\\ &=\left (a(2)+b \right )-\left ( a(-2)+b \right )=8\\ &8=2a+2a\\ &8=4a\\ &2=a\\ &f(x)=2x+b,\quad \textrm{dengan}\: \: b\: \: \textrm{konstan}\\ &\textrm{Sehingga nilai}\quad\\ &f(4)-f(-2)=\left (2(4)+b \right )-\left (2(-2)+b \right )\\ &=8+b+4-b\\ &=12 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Ubahlah}\: \: 8-6x-x^{2}\: \: \textrm{ke dalam bentuk}\\ & a-(x+b)^{2},\: \textrm{selanjutnya tentukan}\\ & \textrm{daerah hasil dari}\: \: f(x)=8-6x-x^{2}\\ & \textrm{untuk}\: \: x\: \: \textrm{bilangan real}\\ &\qquad(\textit{NTU Entrance Examination AO-level})\\\\ &\textbf{Jawab}:\\ &\begin{array}{|c|l|}\hline 1.&\textrm{Diketahui}\\\hline &\begin{aligned}\textrm{Misal}\quad\qquad&\\ 8-6x-x^{2}&=f(x)\\ f(x)&=-x^{2}-6x+8\\ &=-\left ( x^{2}+6x-8 \right )\\ &=-\left ( x^{2}+6x+9-17 \right )\\ &=-\left ( (x+3)^{2}-17 \right )\\ &=-(x+3)^{2}+17\\ & \end{aligned}\\\hline 2.&\textrm{Mencari koordinat}\: \: \left ( x_{SS},y_{SS} \right )\\\hline &\begin{aligned}f(x)&=-x^{2}-6x+8\left\{\begin{matrix} a=-1\\ b=-6\\ c=\: \: 8\: \: \end{matrix}\right.\\ \textrm{Maka}&\\ x_{SS}&=\frac{-b}{2a}=\displaystyle \frac{-(-6)}{2(-1)}\\ &=-3\\ y_{SS}&=f(-3)=-\left ( -3+3 \right )^{2}+17=17\\ \therefore &\left ( x_{SS},y_{SS} \right )=(-3,17) \end{aligned}\\\hline 3.&\textrm{Nilai fungsi}\\\hline &\begin{aligned}\textrm{Karena}&\: \: a=-1<0\\ \textrm{maka f}&\textrm{ungsi menghadap}\\ \textbf{ke ba}&\textbf{wah},\: \: \textrm{sehingga}\\ \textrm{daerah}&\: \: \textrm{hasilnya}\: \: \left (R_{f} \right )\\ \textrm{adalah}&:\\ &\left \{ -\infty <y\leq 17 \right \}\\ &\\ &\textrm{Berikut ilustrasinya} \end{aligned}\\\hline \end{array} \end{array}$.

$\begin{array}{ll}\\ 3.&\textrm{Jika}\: \: \alpha \: \: \textrm{dan}\: \: \beta \: \: \textrm{adalah akar-akar dari }\\ &\textrm{persamaan kuadrat}\: \: x^{2}+mx+m=0,\\ &\textrm{maka nilai}\: \: m\: \: \textrm{yang menyebabkan }\\ &\textrm{jumlah kuadrat akar-akar mencapai}\\ &\textrm{minimum adalah}\: ....\\ &\qquad \: \textbf{(UM UNDIP 2014 Mat Das)}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui}\: \: x^{2}+mx+m=0\\ & \textbf{persamaan kuadrat}\: \textrm{dalam}\: \: x,\\ & \textrm{maka}\\ &x^{2}+mx+m=x^{2}-(\alpha +\beta )x+(\alpha \beta )=0\\ &\begin{cases} \alpha +\beta &=-m \\ & \\ \alpha \beta &=m \end{cases}\\ &\textrm{Selanjutnya}\\ &\alpha ^{2}+\beta ^{2}=\left ( \alpha +\beta \right )^{2}-2\alpha \beta\\ &=(-m)^{2}-2m\: \: \textrm{dan dapat kita tuliskan sebagai}\\ &f(m)=m^{2}-2m\begin{cases} a &=1 \\ b &=-2 \\ c &=0 \end{cases} \\ &\textrm{fungsi kuadrat dalam}\: \: m,\\ &\textrm{sehingga kita perlu mencari titik}\: \: \left ( m_{SS},f\left ( m_{SS} \right ) \right ),\\ & \textrm{tetapi yang kita perlukan}\\ &\textrm{cuma}\: \: m-\textrm{nya saja, yaitu}:\: \: m=m_{SS},\\ &\textrm{dengan}\quad m_{SS}=\displaystyle \frac{-b}{2a}=\frac{-(-2)}{2.1}=1 \end{aligned} \end{array}$.


Link Materi

https://ahmadthohir1098.blogspot.com/2024/11/kumpulan-materi-matematika-ma-sma-kelas.html

Sistem Pertidaksamaan Linear

 B. Sistem Pertidaksamaan Linear

$\begin{array}{ll}\\ &\textbf{BENTUK UMUM}\\ &\begin{cases} ax+by<c \\ ax+by\leq c \\ ax+by>c \\ ax+by\geq c \end{cases}\\\\ &\textbf{LANGKAH-LANGKAH}\\ &\textrm{dalam membuat gambar grafik persamaan linear}\\ &\: \textrm{adalah sebagai berikut}:\\ &\bullet\quad \textrm{membuat gambar grafik}\: \: ax+by=c\\ &\quad \: \: \textrm{untuk batas wilayahnya}\\ &\bullet \quad \textrm{menyelidiki wilayah yang dimaksud di sekitar}\\ &\quad \: \: \textrm{garis} \: \: ax+by=c\\ &\bullet \quad \textrm{ambillah sebuah titik}\: \left ( x_{0},y_{0} \right )\: \textrm{sembarang}\\ &\: \: \quad \textrm{kemudian substitusikan ke pertidaksamaan}\\ &\quad \: \: ax+by\: ....\: c\\ &\bullet \quad \textrm{jika diperoleh nilai ketaksamaan yang benar},\\ &\: \: \quad \textrm{maka daerah di mana titik uji}\: \left ( x_{0},y_{0} \right )\\ &\: \: \quad \textrm{berada merupakan wilayah penyelesaiannya}\\ &\: \: \quad \textrm{demikian juga sebaliknya} \end{array}$

$\LARGE\fbox{CONTOH SOAL}$

$\begin{array}{l}\\ 1.&\textrm{Gambarlah himpunan penyelesaian (HP)}\\ &\textrm{dari pertidaksamaan linear berikut}\\ &\textrm{a}.\quad 3x+2y< 6\\ &\textrm{b}.\quad 3x+2y\leq 6\\ &\textrm{c}.\quad 3x+2y> 6\\ &\textrm{d}.\quad 3x+2y\geq 6\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Mula}-\textrm{mula kita gambar garis}\: \: 3x+2y=6\\\\ &\begin{array}{|c|c|c|}\hline \textrm{Komponen}&\textrm{pada}&\textrm{pada}\\ \textrm{titik}&\textrm{sumbu}-y&\textrm{sumbu}-x\\\hline x&0&2\\\hline y&3&0\\\hline (x,y)&(0,3)&(2,0)\\\hline \end{array}\\\\ &\textrm{Selanjutnya gambar grafiknya sebagai berikut}. \end{aligned} \end{array}$

Dan berikut untuk wilayah dan juga batas-batas untuk pertidalsamaan
$3x+2y<6$
Kita dapat menggunakan titik uji untuk memastikan kondisi gambar di atas, yaitu di antaranya
$\begin{array}{|c|c|c|}\hline \textrm{Titik}&\textrm{Pengujian}&\textrm{Keterangan}\\ &\textrm{Uji}&3x+2y<6\\\hline (0,0)&3(0)+2(0)=0<\textbf{6}&\textrm{Dalam wilayah}\\\hline (0,1)&3(0)+2(1)=2<\textbf{6}&\textrm{Dalam wilayah}\\\hline (1,0)&3(1)+2(0)=3<\textbf{6}&\textrm{Dalam wilayah}\\\hline (1,1)&3(1)+2(1)=5<\textbf{6}&\textrm{Dalam wilayah}\\\hline (0,2)&3(0)+2(2)=4<\textbf{6}&\textrm{Dalam wilayah}\\\hline (2,0)&3(2)+2(0)=6=\textbf{6}&\textrm{Di luar wilayah}\\\hline (2,2)&3(2)+2(2)=10>\textbf{6}&\textrm{Di luar wilayah}\\\hline (0,3)&3(0)+2(3)=6=\textbf{6}&\textrm{Di luar wilayah}\\\hline (3,0)&3(3)+2(0)=9>\textbf{6}&\textrm{Di luar wilayah}\\\hline (3,3)&3(3)+2(3)=15>\textbf{6}&\textrm{Di luar wilayah}\\\hline \vdots &\vdots&\vdots \\\hline \end{array}$

Dan berikut untuk wilayah yang memenuhi  $"3x+2y\leq 6$
$\begin{array}{ll}\\ 2.&\textrm{Selesaikanlah pertidaksamaan berikut}\\ &\textrm{a}.\quad 12x+2>4x+6\\ &\textrm{b}.\quad 2-3x<6-x\\ &\textrm{c}.\quad 6x+1\geq 2\\ &\textrm{d}.\quad \displaystyle \frac{2-3x}{2}<\frac{3-x}{3}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\textrm{a}.\: \: 12x&+2>4x+6\\ 12x&-4x>6-2\\ 8x&>4\\ x&>\displaystyle \frac{1}{2} \end{aligned}\\ &\begin{aligned}\color{black}\textrm{b}.\: \: &2-3x<6-x\\ &-3x+x<6-2\\ &-2x<4\: \: \textrm{dikali}\: \: (-1)\\ &2x>-4\: \: (\textrm{tanda berubah})\\ &x>-2 \end{aligned}\\ &\begin{aligned}\textrm{c}.\: \: 6x&+1\geq 2\\ 6x&\geq 2-1\\ x&\geq \displaystyle \frac{1}{6} \end{aligned}\\ &\begin{aligned}\textrm{d}.\: \: \: \: \displaystyle \frac{2-3x}{2}&<\frac{3-x}{3}\\ 3(2-3x)&<2(3-x)\\ 6-9x&<6-2x\\ -9x+2x&<6-6\\ -7x&<0\: \: \textrm{di kali}\: \: (-1)\\ 7x&>0\: \: (\textrm{tanda berubah})\\ x&>\displaystyle \frac{0}{7}\\ x&>0 \end{aligned} \end{array}$

DAFTAR PUSTAKA
  1. Heryadi, D. 2007. Modul Matematikauntuk SMK Kelas X. Bogor: YUDHISTIRA.
  2. Yuana, R.A., Indriyastuti. 2017. Perspektif Matematika 1 untuk Kelas X SMA dan MA Kelompok Mata Pelajaran Wajib. Solo. PT. TIGA SERANGKAI PUSTAKA MANDIRI.

Sistem Persamaan Linear

 A. Sistem Persamaan Linear

Sistem persamaan linear adalah adalah kumpulan dari beberapa persamaan linear di mana koefisien-koefisien persamaannya berupa bilangan real dan anatar variabel saling ada keterkaitan

$\textrm{1. Sistem Persamaan Linear Dua Variabel}$

Sistem Persamaan Linear Dua Variabel yang selanjutnya disingkat dengan SPLDV memiliki bentuk umum sebagai berikut:

$\begin{aligned}&\left\{\begin{matrix} a_{1}x+b_{1}y=c_{1}\\ a_{2}x+b_{2}y=c_{2} \end{matrix}\right. \end{aligned}$

Keterangan:

  • $x,y\: \: \textrm{adalah variabel}$.
  • $a_{1},a_{2}\: \: \textrm{koefisien}\: \: x$
  • $b_{1},b_{2}\: \: \textrm{koefisien}\: \: y$.
  • $c_{1},c_{2}\: \: \textrm{adalah konstanta}$.
  • $a_{1},a_{2},b_{1},b_{2},c_{1},\: \: \textrm{dan}\: \: c_{2}\: \: \textrm{adalah bilangan riil}$.
$\textrm{2. Sistem Persamaan Linear Tiga Variabel}$

$\begin{array}{l}\\ \underline{\textbf{Bentuk Umum}}&:\\ &\begin{cases} a_{1}x+b_{1}y+c_{1}z=d_{1} \\ a_{2}x+b_{2}y+c_{2}z=d_{2} \\ a_{3}x+b_{3}y+c_{3}z=d_{3} \end{cases}\\\\ \qquad \quad \textbf{Keterangan}&\bullet \quad a_{1},\: a_{2},\: a_{3},\\ &\, \: \: \quad b_{1},\: b_{2},\: b_{3},\\ &\, \: \: \quad c_{1},\: c_{2},\: c_{3},\\ &\, \: \: \quad d_{1},\: d_{2},\: d_{3}\\ &\: \: \quad \textrm{semuanya adalah bilangan real} \end{array}$

$\textrm{B. Penyelesaian Sistem persamaan Linear}$

Menentukan penyelesaian atau himpunan penyelesaian (HP) dari sistem persamaan linear baik yang terdiri dari dua variabel ataupun tiga variabel adalah menentukan pasangan koordinat yang memenuhi sistem persamaan tersebut di bilangan riil. Adapun cara menyelesaikan sistem persamaan linear ini
  • Metode Substitusi
  • Metode Eliminasi
  • Metode Eliminasi-Substitusi 
  • Metode Determinan Matrik
  • Metode Invers Matrik (Matrik Persegi minimal ordo 2x2)
$\textrm{1. Metode Eliminasi-Substitusi}$

Adapun langkah-langkah dalam penyelesaian model tipe ini (Metode Substitusi dan Metode Eliminasi mengikuti karena prosesnya terangkum di langkah gabungan ini) adalah:
  • buatlah dua buah kelompok persamaan yang memungkinkan dapat disederhanakan (kalau bisa ambil yang termudah dan sederhana menurut Anda)
  • Salah satu variabel dihilangkan dengan cara menyamakan koefisien variabel yang bersangkutan kemudian mengeliminasikan dengan persamaan linear yang dipilih pada langkat pertama tadi.
  • Nilai variabel yang didapatkan disubstitusikan ke dalam salah satu persamaan pada langkah pertama tadi juga.
  • Jika diperlukan lagi, prinsipnya kembali pada poin pertama tadi

$\LARGE\fbox{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah penyelesaian SPLDV dari}\\ &\begin{cases} 2x-y=7 \\ x-y=-1 \end{cases}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textrm{Mis}&\textrm{alkan}\\ &\begin{cases} 2x-y=7&.....(1) \\ x-y=-1&.....(2) \end{cases}\\ &\begin{aligned}&\textrm{dari persamaan}\: (2)\: \textrm{didapatkan}\\ &x=y-1.\: \textrm{Bentuk ini kemudian}\\ &\textrm{kita substitusikan ke}\\ &\textrm{persamaan}\: \: (1). \end{aligned}\\ &\begin{aligned}2x-y&=7\\ 2\left ( y-1 \right )-y&=7\\ 2y-2-y&=7\\ y&=9\quad .....(3)\\ \textrm{Selanjutnya}&\: \textrm{nilainya kita}\\ \textrm{substitusikan ke}&\: \textrm{persamaan}\: \: (2)\\ x&=y-1\\ x&=9-1\\ x&=8 \end{aligned} \\ &\begin{aligned}&\textrm{Sehingga},\\ &\begin{cases} x =8 \\ y =9 \end{cases}\\ &\textrm{Jadi, HP}=\left \{ (8,9) \right \} \end{aligned}\\ \end{aligned} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah penyelesaian SPLDV dari}\\ &\begin{cases} 2x-y+z=-4 \\ 2x-y-2z=-3\\ x+3y-z=0 \end{cases}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textrm{Per}&\textrm{hatikan misal}\\ &\begin{cases} 2x-y+z=-4..........(1) \\ 2x-y-2z=-3........(2)\\ x+3y-z=0.............(3) \end{cases}\\ &\begin{aligned}&\textrm{dari persamaan}\: (2)\: \textrm{didapatkan}\\ &2x-y=2z-3.\: \textrm{Bentuk ini}\\ &\textrm{kita substitusikan ke}\\ &\textrm{persamaan}\: \: (1). \end{aligned} \\ &\begin{aligned}2x-y+z&=-4\\ (2z-3)+z&=-4\\ 3z&=-1\\ z&=-\frac{1}{3}\quad .....(4)\\ \textrm{Selanjutnya}&\: \textrm{nilai tersebut kita}\\ \textrm{substitusikan ke}&\: \textrm{pers.}\: \: (2)\: \textrm{dan}\: (3)\\ \end{aligned}\\ &\begin{aligned}&\textrm{Selanjutnya}\\ &\begin{cases} 6x-3y=-11.....(2) \\ x+3y=-\frac{1}{3}.....(3) \end{cases} \end{aligned}\\ &\begin{aligned}&\textrm{dengan cara seperti}\\ &\textrm{poin 1.a kita akan}\\ &\textrm{mendapatkan nilai}\\ x&=-\frac{34}{21}\: \textrm{dan}\\ y&=\frac{3}{7} \end{aligned} \\ &\begin{aligned}&\textrm{Sehingga},\\ &\begin{cases} x =-\frac{34}{21} \\ y =\frac{3}{7}\\ z=-\frac{1}{3} \end{cases}\\ &\textrm{HP}=\left \{ \left ( -\frac{34}{21},\frac{3}{7},-\frac{1}{3} \right ) \right \} \end{aligned} \end{aligned} \end{array}$

TAMBAHAN MATERI

$\textrm{2. Metode determinan Matriks}$

Perhatikan kemabil bentuk SPLDV dan SPLTV berikut:

$\begin{cases} a_{1}x+b_{1}y=c_{1} \\ a_{2}x+b_{2}y=c_{2} \end{cases}$ 

dan

$\begin{cases} a_{1}x+b_{1}y+c_{1}z=d_{1}\\ a_{1}x+b_{1}y+c_{1}z=d_{1} \\ a_{1}x+b_{1}y+c_{1}z=d_{1} \end{cases}$

Metode determinat matriks adalah penyelesaian nilai tidap variabel dengan menggunakan determinan berikut:

Misalkan saja diberikan:

$\begin{aligned}&\begin{aligned}ax+by&=p\\ cx+dy&=q \end{aligned}\\\\ &\textrm{dan}\\\\ &\begin{aligned}ax+by+cz&=r\\ dx+ey+fz&=s\\ gx+hy+iz&=t \end{aligned}\\ \end{aligned}$

maka penyelesaian dengan model matriks adalah:

$\begin{array}{|c|c|c|}\hline \textrm{Metode}&\textbf{SPLDV}&\textbf{SPLTV}\\\hline \textrm{Determinan}&\begin{aligned}x&=\displaystyle \frac{\begin{vmatrix} p & b\\ q & d \end{vmatrix}}{\begin{vmatrix} a & b\\ c & d \end{vmatrix}}\\ &\textrm{dan}\\ y&=\displaystyle \frac{\begin{vmatrix} a & p\\ c & q \end{vmatrix}}{\begin{vmatrix} a & b\\ c & d \end{vmatrix}}\\ &\\ &\\ &\\ &\\ &\\ &\\ &\\ &\\ & \end{aligned}&\begin{aligned}x&=\displaystyle \frac{\begin{vmatrix} r & b & c\\ s & e & f\\ t & h & i \end{vmatrix}}{\begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i \end{vmatrix}}\\ &\textrm{dan}\\ y&=\displaystyle \frac{\begin{vmatrix} a & r & c\\ d & s & f\\ g & t & i \end{vmatrix}}{\begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i \end{vmatrix}}\\ &\textrm{serta}\\ z&=\displaystyle \frac{\begin{vmatrix} a & b & r\\ d & e & s\\ g & h & t \end{vmatrix}}{\begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i \end{vmatrix}} \end{aligned}\\\hline \end{array}$

Sebagai catatan:

$\begin{aligned}&\begin{vmatrix} a & b\\ c & d \end{vmatrix}=ad-bc\\ &\textrm{dan}\\ &\begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i \end{vmatrix}=a\begin{vmatrix} e & f\\ h & i \end{vmatrix}-b\begin{vmatrix} d & f\\ g & i \end{vmatrix}+c\begin{vmatrix} d & e\\ g & h \end{vmatrix} \end{aligned}$

$\LARGE\fbox{CONTOH SOAL}$

Mari kita buka lagi contoh sebelumnya dengan soal yang sama di SINI

dan kearang penyelesaian dari soal tersebut akan diselesaikan dengan cara determinan matriks (cara Cramer sesuai nama penemunya) berikut:

$\begin{array}{ll}\\ 1.&\textrm{Tentukanlah dengan metode matriks}\\ &\textrm{(cara Cramer) SPLDV berikut}:\\ &\begin{cases} 2x-y & =7 \\ x-y & =-1 \end{cases}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}x&=\displaystyle \frac{\begin{vmatrix} 7 & -1\\ -1 & -1 \end{vmatrix}}{\begin{vmatrix} 2 & -1\\ 1 & -1 \end{vmatrix}}=\frac{7(-1)-(-1).(-1)}{2.(-1)-(-1).1}\\ &=\displaystyle \frac{-7-1}{-2+1}=\frac{-8}{-1}=8\\ y&=\displaystyle \frac{\begin{vmatrix} 2 & 7\\ 1 & -1 \end{vmatrix}}{\begin{vmatrix} 2 & -1\\ 1 & -1 \end{vmatrix}}=\frac{2(-1)-(7).1}{2.(-1)-(-1).1}\\ &=\displaystyle \frac{-2-7}{-2+1}=\frac{-9}{-1}=9\\ \textrm{J}&\textrm{adi}\: \: (x,y)=(8,9) \end{aligned} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah dengan metode matriks}\\ &\textrm{(cara Cramer) SPLTV berikut}:\\ &\begin{cases} 2x-y+z & =-4 \\ 2x-y-2z & =-3\\ x+3y-z&=0 \end{cases}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}x&=\displaystyle \frac{\begin{vmatrix} -4 & -1&1\\ -3 & -1&-2\\ 0&3&-1 \end{vmatrix}}{\begin{vmatrix} 2 & -1&1\\ 2 & -1&-2\\ 1&3&-1 \end{vmatrix}}\\ x&=\displaystyle \frac{-4\begin{vmatrix} -1&-2\\ 3&-1 \end{vmatrix}+1\begin{vmatrix} -3 & -2\\ 0 & -1 \end{vmatrix}+1\begin{vmatrix} -3 & -1\\ 0 & 3 \end{vmatrix}}{2\begin{vmatrix} -1 & -2\\ 3 & -1 \end{vmatrix}+1\begin{vmatrix} 2 & -2\\ 1 & -1 \end{vmatrix}+1\begin{vmatrix} 2 & -1\\ 1 & 3 \end{vmatrix}} \\ &=\displaystyle \frac{-4(1+6)+1(3-0)+1(-9-0)}{2(1+6)+1(-2+2)+1(6+1)}\\ &=\displaystyle \frac{-28+3-9}{14+0+7}\\ &=\frac{-34}{21}\\ y&=.... \\ z&=....\\ \textrm{J}&\textrm{adi}\: \: (x,y,y)=\left ( -\displaystyle \frac{34}{21},\frac{3}{7},-\frac{1}{3} \right ) \end{aligned} \end{array}$

DAFTAR PUSTAKA

  1. Johanes, Kastola & Sulasim. 2006. Kompetensi Matematika 3A SMA Kelas XII Semester Pertama. Jakarta: YUDHISTIRA


Materi Link

https://ahmadthohir1098.blogspot.com/2024/11/kumpulan-materi-matematika-ma-sma-kelas.html