Tampilkan postingan dengan label Odd Semester Preparation Questions and Answers. Tampilkan semua postingan
Tampilkan postingan dengan label Odd Semester Preparation Questions and Answers. Tampilkan semua postingan

Soal dan jawaban Persiapan Semester gasal Kelas XI Matematika Peminatan Bagian Ketujuh

31.Nilai daricosπ7cos2π7cos4π7adalah....a.18d.12b.14c.0e.13Jawab:Alternatif 1cosπ7cos2π7cos4π7×2sin2π72sin2π7=(sin4π7sin0)cosπ7cos4π72sin2π7=sin4π7cosπ7cos4π72sin2π7=(sin5π7+sin3π7)cos4π74sin2π7=sin5π7cos4π7+sin3π7cos4π74sin2π7=sin9π7+sinπ7+sin7π7+sin(π7)8sin2π7=sin2π7+sinπ7+0sinπ78sin2π7=sin2π78sin2π7=18Alternatif 2cosπ7cos2π7cos4π7=cos4π7cos2π7cosπ7=12(cos6π7+cos2π7)cosπ7=12(cos(ππ7)+cos2π7)cosπ7=12(cosπ7+cos2π7)cosπ7=12(cos2π7+cos2π7cosπ7)=14(cos2π7cos0+cos3π7+cosπ7)=14(cos0+cosπ7cos2π7+cos3π7)=14(1+12)=14×(12)=18.

Berikut penjelasan untuk  cosπ7cos2π7+cos3π7=12.

cosπ7cos2π7+cos3π7=cosπ7cos2π7+cos3π7×(2sin2π7)(2sin2π7)=2cosπ7sin2π72cos2π7sin2π7+2cos3π7sin2π72sin2π7=sin3π7sin(π7)(sin4π7sin0π7)+sin5π7sinπ72sin2π7=sin3π7+sinπ7sin4π7+sin5π7sinπ72sin2π7=sin3π7sin4π7+sin5π72sin2π7=sin(π4π7)sin4π7+sin(π2π7)2sin2π7=sin4π7sin4π7+sin2π72sin2π7=sin2π72sin2π7=12.

32.Nilai darisinπ14sin3π14sin9π14adalah....a.116d.12b.18c.14e.1Jawab:Perhatikan bahwasinπ14=sin(7π146π14)=sin(12π6π14)=cos6π14sin3π14=...=cos4π14sin9π14=...=sin5π14=cos2π14...sinπ14sin3π14sin9π14=cos6π14cos4π14cos2π14×2sin2π142sin2π14=cos6π14cos4π14sin4π142sin2π14silahkan dilanjutkan...=18.

33.Nilai daricosπ5cos2π5cos4π5cos8π5adalah....a.116d.116b.18c.0e.18Jawab:cosπ5cos2π5cos4π5cos8π5=cosπ5cos2π5cos4π5cos(π+3π5)=cosπ5cos2π5cos4π5(cos3π5)=cosπ5cos2π5cos4π5cos3π5=cosπ5cos2π5cos3π5cos4π5=cosπ5cos2π5cos3π5cos4π5×2sinπ52sinπ5=cosπ5cos2π5cos3π5(sinπsin3π5)2sinπ5=cosπ5cos2π5cos3π5sin3π52sinπ5=cosπ5cos3π5(cos2π5sin3π5)2sinπ5=cosπ5cos3π5(sinπsin(π5))4sinπ5=cosπ5cos3π5sinπ54sinπ5=cos3π5cosπ5sinπ54sinπ5=cos3π5(cosπ5sinπ5)4sinπ5=cos3π5(sin2π5sin0)8sinπ5=cos3π5sin2π58sinπ5=sinπsinπ516sinπ5=sinπ516sinπ5=116.

34.Nilai darisin18cos36adalah....a.16d.13b.15c.14e.12Jawab:sin18cos36=sin18cos36×2cos182cos18=cos36(sin36+sin0)4cos18=cos36sin364cos18=sin724cos18=sin(9018)4cos18=cos184cos18=14.

35.Nilai eksak darisin36adalah....a.1410+25d.514b.141025e.512c.5+14Jawab:Perhatikanlah ilustrasi gambar berikut.
.Perhatikan bahwaABCsama kakidenganAD=DC=CB=1,AC=xDiketahui pulaCDadalah garis bagisertaABCsebangunBCDakibatnya:perbandingan sisi yang bersesuaianakan sama,makaABBC=BCABADx1=1x1x(x1)=1x2x1=0x=1±52akibatnyaAB=AC=1+52Selanjutnya gunakanaturan sinusABsinC=BCsinAABBC=sinCsinA(1+52)1=sin72sin361+52=2sin36cos36sin361+52=2cos36cos36=⇔1+54Dari fakta di atas kita akan denganmudah menentukan nilai sinusnyayaitu dengan menggunakanidentitas trigonometri berikut:sin236+cos236=1sin236=1cos236sin36=1cos236=1(1+54)2=16+2516=102516=141025



Soal dan jawaban Persiapan Semester gasal Kelas XI Matematika Peminatan Bagian Keenam

26.Bentuk sederhana daricos2xcos2ysin2x+sin2yadalah....a.sin(xy)d.cos(xy)b.tan(xy)e.tan(xy)c.sin(x+y)Jawab:cos2xcos2ysin2x+sin2y=2sin(x+y)sin(xy)2sin(x+y)cos(xy)=tan(xy).

27.Nilai dari8cos82,5sin37,5adalah....a.4(3+2)d.2(32)b.4(32)e.32c.2(3+2)Jawab:8cos82,5sin37,5=4×2cos82,5sin37,5=4×(sin(82,5+37,5)sin(82,537,5))=4×(sin120sin45)=4×(sin(18060)sin45)=4×(sin60sin45)=4×(123122)=2(32).

28.Bentuk lain dari2cos5A.cos7Aadalah....a.cos6AcosAb.cos6A+cosAc.cos12Acos2Ad.cos12A+cos2Ae.cos12Acos2AJawab:2cos5A.cos7A=(2cos5A.cos7A)=(cos12A+cos(2A))=(cos12A+cos2A)=cos12Acos2A.

29.Bentuk sederhana dari4sin(14π+x)cos(14πx)adalah....a.2+2sin2xd.2+2sinxb.2+sin2xe.2+sinxc.2sin2xJawab:4sin(14π+x)cos(14πx)=2(sin(12π)+sin(2x))=2(1+sin2x)=2+2sin2x.

30.Nilai dari3sin80sin160sin320adalah....a.38d.38b.18e.58c.18Jawab:3sin80sin160sin320=3sin80sin20(sin40)=3sin80sin40sin20=3sin80(12(cos60cos20))=3sin80(14+cos202)=143sin80123sin80cos20=143sin80143(sin100+sin60)=143sin80143(sin80+123)=143sin80143sin80+189=38.


Soal dan jawaban Persiapan Semester gasal Kelas XI Matematika Peminatan Bagian Kelima

21.Nilaicos512πcos112πadalah....a.126d.122b.123c.122e.126Jawab:cos512πcos112π=2sin(512π+112π2)sin(512π112π2)=2sin(612π2)sin(412π2)=2sin(14π)sin(16π)=2(122)(12)=122.

22.Bentuksin(2x32π)sin(4x+12π)senilai dengan....a.2sin3x.sinxd.2sin3x.sinxb.2cos3x.sinxe.2cos3x.sinxc.2sin2(xπ)Jawab:sin(2x32π)sin(4x+12π)=2cos(2x32π+4x+12π2)×sin(2x32π(4x+12π)2)=2cos(3x12π)sin(xπ)=2cos(12π3x)(sin(π+x))=2(sin3x)((sinx))=2sin3x.sinx.

23.Bentukcos3xsin6xcos9xsin9xcos6xsin3xsenilai dengan....a.tan6xd.6cotxb.cot6xe.tan6xc.6tanxJawab:cos3xsin6xcos9xsin9xcos6xsin3x=cos3xcos9xsin6xsin9xsin3xcos6x=2sin6xsin(3x)sin6x2cos6xsin3xcos6x=2sin6xsin3xsin6x2cos6xsin3xcos6x=sin6x(2sin3x1)cos6x(2sin3x1)=tan6x.

24.Nilai darisinx+sin3x+sin5x+sin7xcosx+cos3x+cos5x+cos7xadalah....a.tan2xd.tan8xb.tan4xe.tan16xc.tan6xJawab:sinx+sin3x+sin5x+sin7xcosx+cos3x+cos5x+cos7x=sin7x+sinx+sin5x+sin3xcos7x+cosx+cos5x+cos3x=2sin4xcos3x+2sin4xcosx2cos4xcos3x+2cos4xcosx=2sin4x(cos3x+cosx)2cos4x(cos3x+cosx)=tan4x.

25.Bentuk sederhana daricosA+sinAcosAsinAcosAsinAcosA+sinAadalah....a.tanAd.2cos2Ab.2tanAe.2tan2Ac.2sin2AJawab:cosA+sinAcosAsinAcosAsinAcosA+sinA=(cosA+sinA)2(cosAsinA)2(cosAsinA)(cosA+sinA)=(cos2A+2cosAsinA+sin2A)(cos2A2cosAsinA+sin2A)cos2Asin2A=4cosAsinAcos2Asin2A=2sin2Acos2A=2tan2A.

Soal dan jawaban Persiapan Semester gasal Kelas XI Matematika Peminatan Bagian Keempat

16.Himpunan penyelesaian dari persamaan3tan(2x13π)=3untuk0xπadalah....a.{112π,712π}b.{212π,912π}c.{312π,712π}d.{312π,912π}e.{512π,712π}Jawab:3tan(2x13π)=3tan(2x13π)=33(kuadran IV, karena Y negatif, X positif)tan(2x13π)=tan16π,menjaditan(2x13π)=tan(2π16π)=tan116π(2x13π)=116π2x=13π+116π+k.π=136π+k.πx=1312π+k.π2k=0x=1312π=112π(mm)k=1x=1312π+12π=1912π=712π(mm)k=2x=1312π+πtidak memenuhiHP={112π,712π}.

17.Salah satu nilaixyang memenuhipersamaancosx+sinx=126adalah....a.124πd.18πb.115πc.112πe.16πJawab:Diketahui bahwasinx+cosx=126(ingat:a=1,b=1)sinx+cosx=kcos(xθ)=126{k=12+12=2tanθ=ab=11=1θ=45=14πsudutθdi kuadran I, karenaa,b>0selanjutnyasinx+cosx=kcos(xθ)=1262cos(x14π)=126cos(x14π)=1262=123cos(x14π)=cos16πx14π=±16π+k.2πx=14π±16π+k.2πx1=512π+k.2πataux2=112π+k.2πk=0x1=512π(memenuhi)x2=112π(memenuhi)Langkah berikutnya tidak diperlukankarena jawaban sudah kita dapatkanyaitu:112π.

18.Himpunan penyelesaian persamaancosx3sinx=1untuk0x<360adalah....a.{0,240}d.{180,240}b.{150,270}c.{180,300}e.{210,270}Jawab:Diketahui dari soal bahwacosx3sinx=1,lalu kita ubah posisinya menjadi3sinx+cosx=1(ingat:a=3,b=1)3sinx+cosx=kcos(xθ)=1{k=(3)2+(1)2=4=2tanθ=ab=31=3θ=300sudutθdi kuadran IV, karenaa<0,b>0selanjutnya3sinx+cosx=kcos(xθ)=12cos(x300)=1cos(x300)=12cos(x300)=cos60x300=±60+k.360x=300±60+k.360k=0x1=300+60=360=0(mm)ataux2=30060=240(mm)k=1x=300±60+360(tm)HP={0,240}

19.Diketahuiαβ=π3dansinαsinβ=14denganαdanβadalah sudutlancipNilai daricos(α+β)adalah....a.1d.14b.34c.12e.0Jawab:Diketahui bahwaαβ=π3dansinαsinβ=14denganαdanβsudutlancipakibatnya semua sudut dikuadran Isehingga{sin=+cos=+tan=+ditanyacos(α+β),makasebagai langkah awal kita adalah:cos(αβ)=cos(π3)cosαcosβ+sinαsinβ=12cosαcosβ+14=12cosαcosβ=1214=14Selanjutnya nilai daricos(α+β)=cosαcosβsinαsinβ=1414=0.

20.Nilaisin75sin165adalah....a.142d.122b.143c.146e.126Jawab:sin75sin165=2cos(75+1652)sin(751652)=2cos2402sin(902)=2cos120sin(45)=2(cos60)(sin45)=2(12)(122)=122.


Soal dan jawaban Persiapan Semester gasal Kelas XI Matematika Peminatan Bagian Ketiga

11.Grafik fungsi trigonometri pada gambarberikut adalah.....

.a.y=2cosxb.y=cos2xc.y=cos12xd.y=2cos2xe.y=2cos12xJawab:Dari grafik tampak jelas bahwagambar di atas adalah garfikfungsi cosinus di geser keatas dan ke bawahdenganamplitudo2danperiodenya3602=180=π,makabentuk persamaangrafik fungsinyay=2cos2x.

12.Grafik fungsi trigonometri pada gambarberikut adalah.....

.a.y=2sin(2x+π)b.y=sin(2x12π)c.y=2sin(2x12π)d.y=sin(2x+12π)e.y=2sin(x+12π)Jawab:Dari grafik tampak jelas bahwagambar di atas adalah garfikfungsi cosinus di geser kekiridenganamplitudo2danperiodenya3601=360=2π,makabentuk persamaangrafik fungsinyay=2sin(x+kx)dengan+kadalahbesar geseran ke kiri12πatau90Jadi,y=2sin(x+12π).

13.Himpunan penyelesaian dari persamaansinx=sin210πuntuk0x360adalah....a.{2210π,810π}b.{210π,2810π}c.{210π,810π}d.{2210π,2810π}e.{1210π,810π}Jawab:sinx=sin210πx1=210π+k.2πataux2=(π210π)+k.2π=810π+k.2πk=0x1=210π(mm)ataux2=810π(mm)k=1x1,2=....+2π(tidak memenuhi)HP={210π,810π}.

14.Himpunan penyelesaian dari persamaantan(2x14π)=tan14πuntuk0x360adalah....a.{13π,π,53π,73π}b.{14π,35π,54π,85π}c.{14π,34π,64π,74π}d.{24π,34π,π,74π}e.{14π,34π,54π,74π}Jawab:tan(2x14π)=tan14π2x14π=14π+k.π2x=24π+k.πx=14π+k.π2k=0x=14π(mm)k=1x=14π+π2=34π(mm)k=2x=14π+π=54π(mm)k=3x=14π+3π2=74π(mm)k=4x=14π+2π=94π(tidak memenuhi)HP={14π,34π,54π,74π}.

15.Himpunan penyelesaian dari persamaancos2x2cosx=1untuk0<x<2πadalah....a.{0,12π,32π,2π}b.{0,12π,23π,2π}c.{0,12π,π,32π}d.{0,12π,23π}e.{0,12π,π}Jawab:cos2x2cosx=1cos2x2cosx+1=0(2cos2x1)2cosx+1=02cosx(cosx1)=0cosx=0ataucosx=1cosx=cos12πataucosx=cos0x1,2=±12π+k.2πataux3=k.2πmakak=0x1=12π(tm)ataux2=12π(mm)x3=0(mm)k=1x1=32π(mm)x2=52π(tm)x3=2π(mm)

Soal dan jawaban Persiapan Semester gasal Kelas XI Matematika Peminatan Bagian Kedua

6.Nilai darisin49cos41cos17sin73adalah....a.1d.0,143b.0,321c.0e.0,321Jawab:sin49cos41cos17sin73=sin49cos(9049)cos17sin(9017)=sin49sin49cos17cos17=11=0.

7.Nilai darip=rsinαcosβq=rsinαsinβs=rcosαmaka pernyataan berikut yangtepat adalah....a.p2+t2+s2=r2b.p2t2+s2=r2c.p2+t2s2=r2d.p2+t2+s2=r2e.p2t2+s2=r2Jawab:Saatp2+q2maka hasilnya adalahp2=r2sin2αcos2βq2=r2sin2αsin2β+=r2sin2α(cos2β+sin2β)=r2sin2α(1)=r2sin2αDan saatp2+q2+s2akan diperoleh hasilp2+q2=r2sin2αs2=r2cos2α+=r2sin2α+r2cos2α=r2(sin2α+cos2α)=r2(1)=r2.

8.Nilai daricos(90+θ)sec(2πθ)tan(πθ)sec(θ2π)sin(540+θ)cot(θ90)adalah....a.1d.tanθb.0c.1e.tanθJawab:Ingat kembali sudut-sudutyang berelasi dari kudran selain Ike kuadran I beserta tandanyacos(90+θ)sec(2πθ)tan(πθ)sec(θ2π)sin(540+θ)cot(θ90)=(sinθ).secθ.(tanθ)secθ.(sinθ).(tanθ)=1.

9.Diketahui bahwasinθ+cosθ=12maka nilai darisin3θ+cos3θadalah....a.12d.58b.34c.915e.1116Jawab:Diketahui bahwasinθ+cosθ=12(sinθ+cosθ)2=14sin2θ+cos2θ+2sinθcosθ=141+2sinθcosθ=142sinθcosθ=34sinθcosθ=38Selanjutnyasin3θ+cos3θ=(sinθ+cosθ)(sin2θsinθcosθ+cos2θ)=(12)(1(38))=12×118=1116.

10.Jika diketahui32π<x<2πdantanx=m,maka nilai darisinxcosxadalah....a.1m2+1d.mm21b.mm2+1c.mm2+1e.mm21Jawab:Diketahui bahwa32π<x<2πini daerah Kwadran IV, akibatnya adalah nilai{sinx=cosx=+tanx=Selanjutnya ada pernyataantanx=mini artinyatanx=m1Perhatikanlah ilustrasi gambar berikut.

.maka nilai darisinxcosx(ingat yang diminta di Kwadran IV)=(mm2+1)×(+1m2+1)=mm2+1

Soal dan jawaban Persiapan Semester gasal Kelas XI Matematika Peminatan Bagian Pertama

1.Nilai105jika dinyatakan ke radianadalah....radiana.13πb.56πc.512πd.712πe.912πJawab:Diketahui bahwa180=πradian1=π180radian105×1=105×π180radian105=712πradian.

2.Nilaitan240adalah....a.3b.133c.133d.123e.3Jawab:tan240=tan(180+60)=tan60=3catatan:ingat sudut berelasi.

3.Perhatikanlah gambar berikut.

.Pada gambar di atas perbandingansinθadalah....a.a2d2f2+g2b.a2+b2f2+g2c.a2b2f2g2d.a2+b2f2g2e.a2b2f2+g2Jawab:Dari soal diketahui bahwasinθ=ce=a2b2f2+g2=a2b2f2+g2.

4.Nilai dari(cos217sin273)adalah....a.0d.1b.13c.23e.123Jawab:(cos217sin273)=(cos217(sin73)2)=(cos217(sin(9017))2)=(cos217cos217)=0.

5.Jika diketahuixcsc230sec2458cos245sin260=tan260tan230,maka nilaixadalah....a.2d.1b.1c.0e.2Jawab:xcsc230sec2458cos245sin260=tan260tan230x(4)(42)8(24)(34)=3(13)8x3=83x=1