Tampilkan postingan dengan label Odd Semester Preparation Questions and Answers. Tampilkan semua postingan
Tampilkan postingan dengan label Odd Semester Preparation Questions and Answers. Tampilkan semua postingan

Soal dan jawaban Persiapan Semester gasal Kelas XI Matematika Peminatan Bagian Ketujuh

$\begin{array}{ll}\\ 31.&\textrm{Nilai dari}\\ &\quad\quad \cos \displaystyle \frac{\pi }{7}\cos \frac{2\pi }{7}\cos \frac{4\pi }{7}\\ & \textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&\displaystyle \color{red}-\displaystyle \frac{1}{8} &&&\textrm{d}.&\displaystyle \frac{1}{2}\\\\ \textrm{b}.&\displaystyle -\frac{1}{4}&\quad \textrm{c}.&0\quad &\textrm{e}.&\displaystyle \frac{1}{3} \end{array}\\\\ &\color{blue}\textbf{Jawab}:\\ &\textbf{Alternatif 1}\\ &\begin{aligned}&\cos \displaystyle \frac{\pi }{7}\cos \frac{2\pi }{7}\cos \frac{4\pi }{7}\times \displaystyle \frac{2\sin \displaystyle \frac{2\pi }{7}}{2\sin \displaystyle \frac{2\pi }{7}}\\ &=\left (\sin \displaystyle \frac{4\pi }{7}-\sin 0 \right )\frac{\displaystyle \cos \frac{\pi }{7}\cos \displaystyle \frac{4\pi }{7}}{2\sin \displaystyle \frac{2\pi }{7}}\\ &=\displaystyle \frac{\sin \displaystyle \frac{4\pi }{7}\displaystyle \cos \frac{\pi }{7}\cos \displaystyle \frac{4\pi }{7}}{2\sin \displaystyle \frac{2\pi }{7}}\\ &=\displaystyle \frac{\left ( \sin \displaystyle \frac{5\pi }{7}+\sin \displaystyle \frac{3\pi }{7} \right )\cos \displaystyle \frac{4\pi }{7}}{4\sin \displaystyle \frac{2\pi }{7}}\\ &=\displaystyle \frac{\sin \displaystyle \frac{5\pi }{7}\cos \displaystyle \frac{4\pi }{7}+\sin \displaystyle \frac{3\pi }{7}\cos \displaystyle \frac{4\pi }{7}}{4\sin \displaystyle \frac{2\pi }{7}}\\ &=\displaystyle \frac{\sin \displaystyle \frac{9\pi }{7}+\sin \displaystyle \frac{\pi }{7}+\sin \displaystyle \frac{7\pi }{7}+\sin \left (-\displaystyle \frac{\pi }{7} \right )}{8\sin \displaystyle \frac{2\pi }{7}}\\ &=\displaystyle \frac{-\sin \displaystyle \frac{2\pi }{7}+\sin \displaystyle \frac{\pi }{7}+0-\sin \displaystyle \frac{\pi }{7}}{8\sin \displaystyle \frac{2\pi }{7}}\\ &=\displaystyle \frac{-\sin \displaystyle \frac{2\pi }{7}}{8\sin \displaystyle \frac{2\pi }{7}}\\ &=-\displaystyle \frac{1}{8} \end{aligned}\\ &\textbf{Alternatif 2}\\ &\begin{aligned}&\cos \displaystyle \frac{\pi }{7}\cos \frac{2\pi }{7}\cos \frac{4\pi }{7}\\ &=\cos \displaystyle \frac{4\pi }{7}\cos \frac{2\pi }{7}\cos \frac{\pi }{7}\\ &=\displaystyle \frac{1}{2}\left ( \cos \displaystyle \frac{6\pi }{7}+\cos \displaystyle \frac{2\pi }{7} \right )\cos \displaystyle \frac{\pi }{7}\\ &=\displaystyle \frac{1}{2}\left ( \cos \left ( \pi -\displaystyle \frac{\pi }{7} \right )+\cos \displaystyle \frac{2\pi }{7} \right )\cos \displaystyle \frac{\pi }{7}\\ &=\displaystyle \frac{1}{2}\left ( -\cos \displaystyle \frac{\pi }{7}+\cos \displaystyle \frac{2\pi }{7} \right )\cos \displaystyle \frac{\pi }{7}\\ &= \displaystyle \frac{1}{2}\left (-\cos ^{2}\displaystyle \frac{\pi }{7}+\cos \displaystyle \frac{2\pi }{7}\cos \displaystyle \frac{\pi }{7} \right )\\ &=\displaystyle \frac{1}{4}\left ( -\cos \displaystyle \frac{2\pi }{7}-\cos 0+\cos \displaystyle \frac{3\pi }{7}+\cos \displaystyle \frac{\pi }{7} \right )\\ &=\displaystyle \frac{1}{4}\left ( -\cos 0+\color{red}\cos \displaystyle \frac{\pi }{7}-\cos \displaystyle \frac{2\pi }{7}+\cos \displaystyle \frac{3\pi }{7} \color{black}\right )\\ &=\displaystyle \frac{1}{4}\left ( -1+\color{red}\displaystyle \frac{1}{2}\color{black} \right )\\ &=\displaystyle \frac{1}{4}\times \left (-\frac{1}{2} \right )\\ &=-\displaystyle \frac{1}{8} \end{aligned} \end{array}$.

Berikut penjelasan untuk  $\cos \displaystyle \frac{\pi }{7}-\cos \displaystyle \frac{2\pi }{7}+\cos \displaystyle \frac{3\pi }{7}=\color{red}\displaystyle \frac{1}{2}$.

$\begin{aligned}&\cos \displaystyle \frac{\pi }{7}-\cos \displaystyle \frac{2\pi }{7}+\cos \displaystyle \frac{3\pi }{7}\\ &=\cos \displaystyle \frac{\pi }{7}-\cos \displaystyle \frac{2\pi }{7}+\cos \displaystyle \frac{3\pi }{7}\times \displaystyle \frac{\left (2\sin\displaystyle \frac{2\pi }{7} \right ) }{\left (2\sin\displaystyle \frac{2\pi }{7} \right )}\\ &=\displaystyle \frac{2\cos\displaystyle \frac{\pi }{7}\sin\displaystyle \frac{2\pi }{7}-2\cos\displaystyle \frac{2\pi }{7}\sin\displaystyle \frac{2\pi }{7}+2\cos\displaystyle \frac{3\pi }{7}\sin\displaystyle \frac{2\pi }{7}}{2\sin\displaystyle \frac{2\pi }{7}}\\ &=\displaystyle \frac{\sin\displaystyle \frac{3\pi }{7}-\sin\left (-\displaystyle \frac{\pi }{7} \right )-\left ( \sin\displaystyle \frac{4\pi }{7}-\sin\displaystyle \frac{0\pi }{7} \right )+\sin\displaystyle \frac{5\pi }{7}-\sin\displaystyle \frac{\pi }{7}}{2\sin\displaystyle \frac{2\pi }{7}}\\ &=\displaystyle \frac{\sin\displaystyle \frac{3\pi }{7}+\sin\displaystyle \frac{\pi }{7}-\sin\displaystyle \frac{4\pi }{7}+\sin\displaystyle \frac{5\pi }{7}-\sin\displaystyle \frac{\pi }{7}}{2\sin\displaystyle \frac{2\pi }{7}}\\ &=\displaystyle \frac{\sin\displaystyle \frac{3\pi }{7}-\sin\displaystyle \frac{4\pi }{7}+\sin\displaystyle \frac{5\pi }{7}}{2\sin\displaystyle \frac{2\pi }{7}}\\ &=\displaystyle \frac{\sin\left (\pi -\displaystyle \frac{4\pi }{7} \right )-\sin\displaystyle \frac{4\pi }{7}+\sin\left (\pi -\displaystyle \frac{2\pi }{7} \right )}{2\sin\displaystyle \frac{2\pi }{7}}\\ &=\displaystyle \frac{\sin\displaystyle \frac{4\pi }{7}-\sin\displaystyle \frac{4\pi }{7}+\sin\displaystyle \frac{2\pi }{7}}{2\sin\displaystyle \frac{2\pi }{7}}\\ &=\displaystyle \frac{\sin\displaystyle \frac{2\pi }{7}}{2\sin\displaystyle \frac{2\pi }{7}}\\ &=\displaystyle \frac{1}{2}\qquad \blacksquare \end{aligned}$.

$\begin{array}{ll}\\ 32.&\textrm{Nilai dari}\\ &\quad\quad \sin \displaystyle \frac{\pi }{14}\sin \frac{3\pi }{14}\sin \frac{9\pi }{14}\\ & \textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&\displaystyle \displaystyle \frac{1}{16} &&&\textrm{d}.&\displaystyle \frac{1}{2}\\\\ \textrm{b}.&\displaystyle \color{red}\frac{1}{8}&\quad \textrm{c}.&\displaystyle \frac{1}{4}\quad &\textrm{e}.&\displaystyle 1 \end{array}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}\textrm{Perhat}&\textrm{ikan bahwa}\\ \sin \displaystyle \displaystyle \frac{\pi }{14}&=\sin \left (\displaystyle \frac{7\pi }{14}-\frac{6\pi }{14} \right )=\sin \left ( \displaystyle \frac{1}{2}\pi -\frac{6\pi }{14} \right )\\ &=\cos \displaystyle \frac{6\pi }{14} \\ \sin \displaystyle \frac{3\pi }{14}&=...=\cos \displaystyle \frac{4\pi }{14}\\ \sin \displaystyle \frac{9\pi }{14}&=...=\sin \displaystyle \frac{5\pi }{14}=\cos \displaystyle \frac{2\pi }{14} \end{aligned}\\ &...\\ &\sin \displaystyle \frac{\pi }{14}\sin \frac{3\pi }{14}\sin \frac{9\pi }{14}\\ &=\cos \displaystyle \frac{6\pi }{14}\cos \displaystyle \frac{4\pi }{14}\cos \displaystyle \frac{2\pi }{14}\times \displaystyle \frac{2\sin \displaystyle \frac{2\pi }{14}}{2\sin \displaystyle \frac{2\pi }{14}}\\ &=\displaystyle \frac{\cos \displaystyle \frac{6\pi }{14}\cos \displaystyle \frac{4\pi }{14}\sin \displaystyle \frac{4\pi }{14}}{2\sin \displaystyle \frac{2\pi }{14}}\\ &\textrm{silahkan dilanjutkan}\\ &...\\ &=\displaystyle \frac{1}{8} \end{array}$.

$\begin{array}{ll}\\ 33.&\textrm{Nilai dari}\\ & \cos \displaystyle \frac{\pi }{5}\cos \frac{2\pi }{5}\cos \frac{4\pi }{5}\cos \displaystyle \frac{8\pi }{5}\\ & \textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&\displaystyle \color{red}-\displaystyle \frac{1}{16} &&&\textrm{d}.&\displaystyle \frac{1}{16}\\\\ \textrm{b}.&\displaystyle \frac{1}{8}&\quad \textrm{c}.&\displaystyle 0\quad &\textrm{e}.&\displaystyle \frac{1}{8} \end{array}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}&\cos \displaystyle \frac{\pi }{5}\cos \frac{2\pi }{5}\cos \frac{4\pi }{5}\cos \displaystyle \frac{8\pi }{5}\\ &=\cos \displaystyle \frac{\pi }{5}\cos \frac{2\pi }{5}\cos \frac{4\pi }{5}\cos \left (\pi +\displaystyle \frac{3\pi }{5} \right )\\ &=\cos \displaystyle \frac{\pi }{5}\cos \frac{2\pi }{5}\cos \frac{4\pi }{5}\left (-\cos \displaystyle \frac{3\pi }{5} \right )\\ &=-\cos \displaystyle \frac{\pi }{5}\cos \frac{2\pi }{5}\cos \frac{4\pi }{5}\cos \displaystyle \frac{3\pi }{5}\\ &=-\cos \displaystyle \frac{\pi }{5}\cos \frac{2\pi }{5}\cos \frac{3\pi }{5}\cos \displaystyle \frac{4\pi }{5}\\ &=-\cos \displaystyle \frac{\pi }{5}\cos \frac{2\pi }{5}\cos \frac{3\pi }{5}\cos \displaystyle \frac{4\pi }{5}\times \displaystyle \frac{2\sin \displaystyle \frac{\pi }{5}}{2\sin \displaystyle \frac{\pi }{5}}\\ &=\frac{-\cos \displaystyle \frac{\pi }{5}\cos \frac{2\pi }{5}\cos \frac{3\pi }{5}\left ( \sin \pi -\sin \displaystyle \frac{3\pi }{5} \right )}{2\sin \displaystyle \frac{\pi }{5}}\\ &=\displaystyle \frac{\cos \displaystyle \frac{\pi }{5}\cos \frac{2\pi }{5}\cos \frac{3\pi }{5} \sin \frac{3\pi }{5}}{2\sin \displaystyle \frac{\pi }{5}}\\ &=\displaystyle \frac{\cos \displaystyle \frac{\pi }{5}\cos \displaystyle \frac{3\pi }{5}\left ( \cos \displaystyle \frac{2\pi }{5}\sin \displaystyle \frac{3\pi }{5} \right )}{2\sin \displaystyle \frac{\pi }{5}}\\ &=\displaystyle \frac{\cos \displaystyle \frac{\pi }{5}\cos \displaystyle \frac{3\pi }{5}\left ( \sin \pi -\sin \left ( -\displaystyle \frac{\pi }{5} \right ) \right )}{4\sin \displaystyle \frac{\pi }{5}}\\ &=\displaystyle \frac{\cos \displaystyle \frac{\pi }{5}\cos \displaystyle \frac{3\pi }{5}\sin \displaystyle \frac{\pi }{5}}{4\sin \displaystyle \frac{\pi }{5}}\\ &=\displaystyle \frac{\cos \displaystyle \frac{3\pi }{5}\cos \displaystyle \frac{\pi }{5}\sin \displaystyle \frac{\pi }{5}}{4\sin \displaystyle \frac{\pi }{5}}\\ &=\displaystyle \frac{\cos \displaystyle \frac{3\pi }{5}\left (\cos \displaystyle \frac{\pi }{5}\sin \displaystyle \frac{\pi }{5} \right )}{4\sin \displaystyle \frac{\pi }{5}}\\ &=\displaystyle \frac{\cos \displaystyle \frac{3\pi }{5}\left (\sin \displaystyle \frac{2\pi }{5}-\sin 0 \right )}{8\sin \displaystyle \frac{\pi }{5}}\\ &=\displaystyle \frac{\cos \displaystyle \frac{3\pi }{5}\sin \displaystyle \frac{2\pi }{5}}{8\sin \displaystyle \frac{\pi }{5}}\\ &=\displaystyle \frac{\sin \pi -\sin \displaystyle \frac{\pi }{5}}{16\sin \displaystyle \frac{\pi }{5}}\\ &=-\displaystyle \frac{\sin \displaystyle \frac{\pi }{5}}{16\sin \displaystyle \frac{\pi }{5}}\\ &=-\displaystyle \frac{1}{16} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 34.&\textrm{Nilai dari}\\ & \qquad\qquad\sin 18^{\circ}\cos 36^{\circ}\\ & \textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&\displaystyle \frac{1}{6} &&&\textrm{d}.&\displaystyle \frac{1}{3}\\\\ \textrm{b}.&\displaystyle \frac{1}{5}&\quad \textrm{c}.&\displaystyle \color{red}\displaystyle \frac{1}{4}\quad &\textrm{e}.&\displaystyle \frac{1}{2} \end{array}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}&\sin 18^{\circ}\cos 36^{\circ}\\ &=\sin 18^{\circ}\cos 36^{\circ}\times \displaystyle \frac{2\cos 18^{\circ}}{2\cos 18^{\circ}}\\ &=\displaystyle \frac{\cos 36^{\circ}\left ( \sin 36^{\circ}+\sin 0^{\circ} \right )}{4\cos 18^{\circ}}\\ &=\displaystyle \frac{\cos 36^{\circ}\sin 36^{\circ}}{4\cos 18^{\circ}}\\ &=\displaystyle \frac{\sin 72^{\circ}}{4\cos 18^{\circ}}\\ &=\displaystyle \frac{\sin \left ( 90^{\circ}-18^{\circ} \right )}{4\cos 18^{\circ}}\\ &=\displaystyle \frac{\cos 18^{\circ}}{4\cos 18^{\circ}}\\ &=\displaystyle \frac{1}{4} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 35.&\textrm{Nilai eksak dari}\: \: \sin 36^{\circ}\\ & \textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&\displaystyle \displaystyle \frac{1}{4}\sqrt{10+2\sqrt{5}}&&&\textrm{d}.&\displaystyle \frac{\sqrt{5}-1}{4}\\ \textrm{b}.&\color{red}\displaystyle \frac{1}{4}\sqrt{10-2\sqrt{5}}&&\quad &\textrm{e}.&\displaystyle \frac{\sqrt{5}-1}{2}\\ \textrm{c}.&\displaystyle \displaystyle \frac{\sqrt{5}+1}{4} \end{array}\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{Perhatikanlah ilustrasi gambar berikut} \end{array}$.
$.\qquad\begin{aligned}&\textrm{Perhatikan bahwa}\: \: \color{red}\bigtriangleup ABC\: \: \color{black}\textrm{sama kaki}\\ &\textrm{dengan}\: \: AD=DC=CB=1,\: AC=x\\ &\textrm{Diketahui pula}\: \: CD\: \: \textrm{adalah garis bagi}\\ &\textrm{serta}\: \: ABC\: \: \textrm{sebangun}\: \: \bigtriangleup BCD\\ &\textrm{akibatnya}:\\ &\color{red}\textrm{perbandingan sisi yang bersesuaian}\\ &\color{red}\textrm{akan sama},\: \: \color{black}\textrm{maka}\\ &\displaystyle \frac{AB}{BC}=\displaystyle \frac{BC}{AB-AD}\\ &\Leftrightarrow \displaystyle \frac{x}{1}=\frac{1}{x-1}\\ &\Leftrightarrow x(x-1)=1\\ &\Leftrightarrow x^{2}-x-1=0\\ &\Leftrightarrow x=\displaystyle \frac{1\pm \sqrt{5}}{2}\\ &\textrm{akibatnya}\: \: AB=AC=\displaystyle \frac{1+\sqrt{5}}{2}\\ &\textrm{Selanjutnya gunakan}\: \: \color{blue}\textrm{aturan sinus}\\ &\displaystyle \frac{AB}{\sin \angle C}=\frac{BC}{\sin \angle A}\\ &\Leftrightarrow \displaystyle \frac{AB}{BC}=\frac{\sin \angle C}{\sin \angle A}\\ &\Leftrightarrow \displaystyle \frac{ \left (\displaystyle \frac{1+\sqrt{5} }{2} \right )}{1}=\frac{\sin 72^{\circ}}{\sin 36^{\circ}}\\ &\Leftrightarrow \displaystyle \frac{1+\sqrt{5}}{2}=\displaystyle \frac{2\sin 36^{\circ}\cos 36^{\circ}}{\sin 36^{\circ}}\\ &\Leftrightarrow \displaystyle \frac{1+\sqrt{5}}{2}=2\cos 36^{\circ}\\ &\Leftrightarrow \cos 36^{\circ}=\Leftrightarrow \displaystyle \frac{1+\sqrt{5}}{4}\\ &\textrm{Dari fakta di atas kita akan dengan}\\ &\textrm{mudah menentukan nilai sinusnya}\\ &\textrm{yaitu dengan menggunakan}\\ &\textrm{identitas trigonometri berikut}:\\ &\sin ^{2}36^{\circ}+\cos ^{2}36^{\circ}=1\\ &\Leftrightarrow \sin ^{2}36^{\circ}=1-\cos ^{2}36^{\circ}\\ &\Leftrightarrow \sin 36^{\circ}=\sqrt{1-\cos ^{2}36^{\circ}}\\ &\Leftrightarrow \: \: \quad\quad\quad =\sqrt{1-\left ( \displaystyle \frac{1+\sqrt{5}}{4} \right )^{2}}\\ &\Leftrightarrow \: \: \quad\quad\quad =\sqrt{1-\displaystyle \frac{6+2\sqrt{5}}{16}}\\ &\Leftrightarrow \: \: \quad\quad\quad =\sqrt{\displaystyle \frac{10-2\sqrt{5}}{16}}\\ &\Leftrightarrow \: \: \quad\quad\quad =\color{red}\displaystyle \frac{1}{4}\sqrt{10-2\sqrt{5}} \end{aligned}$



Soal dan jawaban Persiapan Semester gasal Kelas XI Matematika Peminatan Bagian Keenam

$\begin{array}{ll}\\ 26.&\textrm{Bentuk sederhana dari}\\ &\qquad\quad \displaystyle \frac{\cos 2x-\cos 2y}{\sin 2x+\sin 2y}\\ & \textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&\displaystyle -\sin (x-y) &&&\textrm{d}.&\cos (x-y)\\ \textrm{b}.&\displaystyle \color{red}-\tan (x-y)&&&\textrm{e}.&\displaystyle \tan (x-y)\\ \textrm{c}.&\displaystyle \sin (x+y) \end{array}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}&\displaystyle \frac{\cos 2x-\cos 2y}{\sin 2x+\sin 2y}\\ &=\displaystyle \frac{-2\sin (x+y)\sin (x-y)}{2\sin (x+y)\cos (x-y)}\\ &=-\tan (x-y) \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 27.&\textrm{Nilai dari}\\ &\quad\quad 8\cos 82,5^{\circ}\sin 37,5^{\circ}\\ & \textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&\displaystyle 4(\sqrt{3}+\sqrt{2}) &&&\textrm{d}.&\color{red}2(\sqrt{3}-\sqrt{2})\\ \textrm{b}.&\displaystyle 4(\sqrt{3}-\sqrt{2})&&&\textrm{e}.&\displaystyle \sqrt{3}-\sqrt{2}\\ \textrm{c}.&\displaystyle 2(\sqrt{3}+\sqrt{2}) \end{array}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}&8\cos 82,5^{\circ}\sin 37,5^{\circ}\\ &=4\times 2\cos 82,5^{\circ}\sin 37,5^{\circ}\\ &=4\times \left ( \sin (82,5^{\circ}+37,5^{\circ})-\sin (82,5^{\circ}-37,5^{\circ}) \right )\\ &=4\times \left (\sin 120^{\circ}-\sin 45^{\circ} \right )\\ &=4\times \left ( \sin \left ( 180^{\circ}-60^{\circ} \right )-\sin 45^{\circ} \right )\\ &=4\times \left ( \sin 60^{\circ}-\sin 45^{\circ} \right )\\ &=4\times \left ( \displaystyle \frac{1}{2}\sqrt{3}-\displaystyle \frac{1}{2}\sqrt{2} \right )\\ &=2\left ( \sqrt{3}-\sqrt{2} \right ) \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 28.&\textrm{Bentuk lain dari}\\ &\quad\quad -2\cos 5A.\cos 7A\\ & \textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&\displaystyle -\cos 6A-\cos A &&&\\ \textrm{b}.&\displaystyle -\cos 6A+\cos A&&&\\ \textrm{c}.&\displaystyle \cos 12A-\cos 2A\\ \textrm{d}.&-\cos 12A+\cos 2A\\ \textrm{e}.&\color{red}\displaystyle -\cos 12A-\cos 2A \end{array}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}&-2\cos 5A.\cos 7A\\ &=-\left ( 2\cos 5A.\cos 7A \right )\\ &=-\left ( \cos 12A+\cos (-2A) \right )\\ &=-\left ( \cos 12A+\cos 2A \right )\\ &=-\cos 12A-\cos 2A \\ \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 29.&\textrm{Bentuk sederhana dari}\\ &\quad\quad 4\sin \left ( \displaystyle \frac{1}{4}\pi +x \right )\cos \left ( \displaystyle \frac{1}{4}\pi -x \right )\\ & \textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&\displaystyle \color{red}2+2\sin 2x &&&\textrm{d}.&2+2\sin x\\ \textrm{b}.&\displaystyle 2+\sin 2x&&&\textrm{e}.&2+\sin x\\ \textrm{c}.&\displaystyle 2\sin 2x \end{array}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}&4\sin \left ( \displaystyle \frac{1}{4}\pi +x \right )\cos \left ( \displaystyle \frac{1}{4}\pi -x \right )\\ &=2\left ( \sin \left ( \displaystyle \frac{1}{2}\pi \right )+\sin (2x) \right )\\ &=2\left (1+\sin 2x \right )\\ &=2+2\sin 2x \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 30.&\textrm{Nilai dari}\\ &\quad\quad \sqrt{3}\sin 80^{\circ}\sin 160^{\circ}\sin 320^{\circ}\\ & \textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&\displaystyle -\displaystyle \frac{3}{8} &&&\textrm{d}.&\displaystyle \color{red}\frac{3}{8}\\\\ \textrm{b}.&\displaystyle -\frac{1}{8}&&&\textrm{e}.&\displaystyle \frac{5}{8}\\ \textrm{c}.&\displaystyle \frac{1}{8} \end{array}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}&\sqrt{3}\sin 80^{\circ}\sin 160^{\circ}\sin 320^{\circ}\\ &=\sqrt{3}\sin 80^{\circ}\sin 20^{\circ}\left (-\sin 40^{\circ} \right )\\ &=-\sqrt{3}\sin 80^{\circ}\sin 40^{\circ}\sin 20^{\circ}\\ &=-\sqrt{3}\sin 80^{\circ}\left ( -\displaystyle \frac{1}{2}\left ( \cos 60^{\circ}-\cos 20^{\circ} \right ) \right )\\ &=-\sqrt{3}\sin 80^{\circ}\left ( -\displaystyle \frac{1}{4}+\displaystyle \frac{\cos 20^{\circ}}{2} \right )\\ &=\displaystyle \frac{1}{4}\sqrt{3}\sin 80^{\circ}-\displaystyle \frac{1}{2}\sqrt{3}\sin 80^{\circ}\cos 20^{\circ}\\ &=\displaystyle \frac{1}{4}\sqrt{3}\sin 80^{\circ}-\displaystyle \frac{1}{4}\sqrt{3}\left ( \sin 100^{\circ}+\sin 60^{\circ} \right )\\ &=\displaystyle \frac{1}{4}\sqrt{3}\sin 80^{\circ}-\displaystyle \frac{1}{4}\sqrt{3}\left ( \sin 80^{\circ}+\displaystyle \frac{1}{2}\sqrt{3} \right )\\ &=\displaystyle \frac{1}{4}\sqrt{3}\sin 80^{\circ}-\displaystyle \frac{1}{4}\sqrt{3}\sin 80^{\circ}+\displaystyle \frac{1}{8}\sqrt{9}\\ &=\displaystyle \frac{3}{8} \end{aligned} \end{array}$.


Soal dan jawaban Persiapan Semester gasal Kelas XI Matematika Peminatan Bagian Kelima

$\begin{array}{ll}\\ 21.&\textrm{Nilai}\: \: \cos \displaystyle \frac{5}{12}\pi -\cos \displaystyle \frac{1}{12}\pi \: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&-\displaystyle \frac{1}{2}\sqrt{6}&&&\textrm{d}.&\displaystyle \frac{1}{2}\sqrt{2}\\\\ \textrm{b}.&-\displaystyle \frac{1}{2}\sqrt{3}&\textrm{c}.&\color{red}-\displaystyle \frac{1}{2}\sqrt{2}&\textrm{e}.&\displaystyle \frac{1}{2}\sqrt{6} \end{array}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}&\cos \displaystyle \frac{5}{12}\pi -\cos \displaystyle \frac{1}{12}\pi \\ &=-2\sin \left ( \displaystyle \frac{\displaystyle \frac{5}{12}\pi +\displaystyle \frac{1}{12}\pi }{2} \right )\sin \left ( \displaystyle \frac{\displaystyle \frac{5}{12}\pi -\displaystyle \frac{1}{12}\pi }{2} \right )\\ &=-2\sin \left (\displaystyle \frac{\displaystyle \frac{6}{12}\pi }{2} \right )\sin \left (\displaystyle \frac{\displaystyle \frac{4}{12}\pi }{2} \right ) \\ &=-2\sin \left (\displaystyle \frac{1 }{4}\pi \right )\sin \left (\displaystyle \frac{1 }{6}\pi \right ) \\ &=-2\left ( \displaystyle \frac{1}{2}\sqrt{2} \right )\left ( \displaystyle \frac{1}{2} \right )\\ &=\color{red}\displaystyle -\frac{1}{2}\sqrt{2} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 22.&\textrm{Bentuk}\: \: \sin \left ( 2x-\displaystyle \frac{3}{2}\pi \right )-\sin \left ( 4x+\displaystyle \frac{1}{2}\pi \right )\\ & \textrm{senilai dengan}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&\displaystyle -2\sin 3x.\sin x &&&\textrm{d}.&\color{red}\displaystyle 2\sin 3x.\sin x\\ \textrm{b}.&\displaystyle -2\cos 3x.\sin x&&&\textrm{e}.&\displaystyle 2\cos 3x.\sin x\\ \textrm{c}.&\displaystyle 2\sin 2\left ( x-\pi \right ) \end{array}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}&\sin \left ( 2x-\displaystyle \frac{3}{2}\pi \right )-\sin \left ( 4x+\displaystyle \frac{1}{2}\pi \right )\\ &=2\cos \left ( \displaystyle \frac{2x-\displaystyle \frac{3}{2}\pi+4x+\displaystyle \frac{1}{2}\pi}{2} \right )\\ &\qquad \times \sin \left ( \displaystyle \frac{2x-\displaystyle \frac{3}{2}\pi-\left (4x+\displaystyle \frac{1}{2}\pi \right )}{2} \right )\\ &=2\cos (3x-\displaystyle \frac{1}{2}\pi )\sin\left ( -x-\pi \right )\\ &=2\cos \left ( \displaystyle \frac{1}{2}\pi -3x \right )\left ( -\sin (\pi +x) \right )\\ &=2\left ( \sin 3x \right )\left ( -(-\sin x) \right )\\ &=2\sin 3x.\sin x \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 23.&\textrm{Bentuk}\: \: \displaystyle \frac{\cos 3x-\sin 6x-\cos 9x}{\sin 9x-\cos 6x-\sin 3x}\\ & \textrm{senilai dengan}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&\displaystyle -\tan 6x &&&\textrm{d}.&6\cot x\\ \textrm{b}.&\displaystyle -\cot 6x&&&\textrm{e}.&\displaystyle \color{red}\tan 6x\\ \textrm{c}.&\displaystyle 6\tan x \end{array}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}&\displaystyle \frac{\cos 3x-\sin 6x-\cos 9x}{\sin 9x-\cos 6x-\sin 3x}\\ &=\displaystyle \frac{\cos 3x-\cos 9x-\sin 6x}{\sin 9x-\sin 3x-\cos 6x}\\ &=\displaystyle \frac{-2\sin 6x\sin (-3x)-\sin 6x}{2\cos 6x\sin 3x-\cos 6x}\\ &=\displaystyle \frac{2\sin 6x\sin 3x-\sin 6x}{2\cos 6x\sin 3x-\cos 6x}\\ &=\displaystyle \frac{\sin 6x(2\sin 3x-1)}{\cos 6x(2\sin 3x-1)}\\ &=\tan 6x \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 24.&\textrm{Nilai dari}\\ &\displaystyle \frac{\sin x+\sin 3x+\sin 5x+\sin 7x}{\cos x+\cos 3x+\cos 5x+\cos 7x}\\ & \textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&\displaystyle \tan 2x &&\textrm{d}.&\displaystyle \tan 8x\\ \textrm{b}.&\color{red}\displaystyle \tan 4x&\quad&\textrm{e}.&\displaystyle \tan 16x\\ \textrm{c}.&\displaystyle \displaystyle \tan 6x \end{array}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}&\displaystyle \frac{\sin x+\sin 3x+\sin 5x+\sin 7x}{\cos x+\cos 3x+\cos 5x+\cos 7x}\\ &=\displaystyle \frac{\sin 7x+\sin x+\sin 5x+\sin 3x}{\cos 7x+\cos x+\cos 5x+\cos 3x}\\ &=\displaystyle \frac{2\sin 4x\cos 3x+2\sin 4x\cos x}{2\cos 4x\cos 3x+2\cos 4x\cos x}\\ &=\displaystyle \frac{2\sin 4x\left ( \cos 3x+\cos x \right )}{2\cos 4x\left ( \cos 3x+\cos x \right )}\\ &=\tan 4x \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 25.&\textrm{Bentuk sederhana dari}\\ &\quad\quad \displaystyle \frac{\cos A+\sin A}{\cos A-\sin A}-\frac{\cos A-\sin A}{\cos A+\sin A}\\ & \textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&\displaystyle \tan A &&&\textrm{d}.&2\cos 2A\\ \textrm{b}.&\displaystyle 2\tan A&&&\textrm{e}.&\displaystyle \color{red}2\tan 2A\\ \textrm{c}.&\displaystyle 2\sin 2A \end{array}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{aligned}&\displaystyle \frac{\cos A+\sin A}{\cos A-\sin A}-\frac{\cos A-\sin A}{\cos A+\sin A}\\ &=\displaystyle \frac{(\cos A+\sin A)^{2}-(\cos A-\sin A)^{2}}{(\cos A-\sin A)(\cos A+\sin A)}\\ &=\displaystyle \frac{(\cos ^{2}A+2\cos A\sin A+\sin ^{2}A)-(\cos ^{2}A-2\cos A\sin A+\sin ^{2}A)}{\cos ^{2}A-\sin ^{2}A}\\ &=\displaystyle \frac{4\cos A\sin A}{\cos ^{2}A-\sin ^{2}A}\\ &=\displaystyle \frac{2\sin 2A}{\cos 2A}\\ &=2\tan 2A \end{aligned} \end{array}$.

Soal dan jawaban Persiapan Semester gasal Kelas XI Matematika Peminatan Bagian Keempat

$\begin{array}{ll}\\ 16.&\textrm{Himpunan penyelesaian dari persamaan}\\ &\qquad\quad 3\tan \left (2x-\displaystyle \frac{1}{3}\pi \right )=-\sqrt{3} \\ & \textrm{untuk}\: \: 0\leq x\leq \pi \: \: \: \textrm{adalah}\: ....\\\\ &\textrm{a}.\quad \color{red}\displaystyle \left \{ \displaystyle \frac{1}{12}\pi ,\displaystyle \frac{7}{12}\pi \right \} \\\\ &\textrm{b}.\quad \displaystyle \left \{ \displaystyle \frac{2}{12}\pi ,\displaystyle \frac{9}{12}\pi \right \} \\\\ &\textrm{c}.\quad \displaystyle \left \{ \displaystyle \frac{3}{12}\pi ,\displaystyle \frac{7}{12}\pi \right \} \\\\ &\textrm{d}.\quad \displaystyle \left \{ \displaystyle \frac{3}{12}\pi ,\displaystyle \frac{9}{12}\pi \right \} \\\\ &\textrm{e}.\quad \displaystyle \left \{ \displaystyle \frac{5}{12}\pi ,\displaystyle \frac{7}{12}\pi \right \} \\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{array}{ll}\\ &\begin{aligned} & 3\tan \left (2x-\displaystyle \frac{1}{3}\pi \right )=-\sqrt{3}\\ &\tan \left (2x-\displaystyle \frac{1}{3}\pi \right )=-\frac{\sqrt{3}}{3}\\ &(\textrm{kuadran IV, karena Y negatif, X positif})\\ &\tan \left (2x-\displaystyle \frac{1}{3}\pi \right )=-\tan \displaystyle \frac{1}{6}\pi ,\: \: \textbf{menjadi}\\ &\tan \left (2x-\displaystyle \frac{1}{3}\pi \right )=\tan \left ( 2\pi -\displaystyle \frac{1}{6}\pi \right )=\tan \displaystyle \frac{11}{6}\pi \\ &\left (2x-\displaystyle \frac{1}{3}\pi \right )=\displaystyle \frac{11}{6}\pi\\ &\Leftrightarrow \: \: 2x=\displaystyle \frac{1}{3}\pi+\displaystyle \frac{11}{6}\pi +k.\pi =\displaystyle \frac{13}{6}\pi +k.\pi \\ &\Leftrightarrow \: \: x=\displaystyle \frac{13}{12}\pi +\displaystyle \frac{k.\pi}{2} \\ &k=0\Rightarrow x=\displaystyle \frac{13}{12}\pi=\displaystyle \frac{1}{12}\pi \: \: (\color{blue}\textrm{mm})\\ &k=1\Rightarrow x=\displaystyle \frac{13}{12}\pi +\displaystyle \frac{1}{2}\pi =\displaystyle \frac{19}{12}\pi=\displaystyle \frac{7}{12}\pi \quad (\color{blue}\textrm{mm})\\ &k=2\Rightarrow x=\displaystyle \frac{13}{12}\pi +\pi \quad \color{red}\textrm{tidak memenuhi} \end{aligned} \\ &\textbf{HP}=\color{red}\left \{\displaystyle \frac{1}{12}\pi,\: \displaystyle \frac{7}{12}\pi \right \} \end{array} \end{array}$.

$\begin{array}{ll}\\ 17.&\textrm{Salah satu nilai}\: \: x\: \: \textrm{yang memenuhi}\\ &\textrm{persamaan}\: \: \cos x+\sin x=\displaystyle \frac{1}{2}\sqrt{6}\\ & \textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&\displaystyle \frac{1}{24}\pi &&&\textrm{d}.&\displaystyle \frac{1}{8}\pi \\\\ \textrm{b}.&\displaystyle \frac{1}{15}\pi&\textrm{c}.&\displaystyle \color{red}\frac{1}{12}\pi&\textrm{e}.&\displaystyle \frac{1}{6}\pi \end{array}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{array}{ll}\\ &\textrm{Diketahui bahwa}\\ &\sin x+\cos x=\displaystyle \frac{1}{2}\sqrt{6}\quad \left (\textbf{ingat}:a=1,\: b=1 \right )\\ &\sin x+\cos x=k\cos \left ( x-\theta \right )=\displaystyle \frac{1}{2}\sqrt{6}\\ &\begin{cases} k & =\sqrt{1^{2}+1^{2}}=\sqrt{2} \\ \tan & \theta =\displaystyle \frac{a}{b}=\displaystyle \frac{1}{1}=1\Rightarrow \theta =45^{\circ}=\displaystyle \frac{1}{4}\pi \end{cases}\\ &\qquad\quad\textrm{sudut}\: \: \theta \: \: \textrm{di kuadran I, karena}\: \: a,b>0\\ &\textrm{selanjutnya}\\ &\begin{aligned}&\sin x+\cos x=k\cos \left ( x-\theta \right )=\displaystyle \frac{1}{2}\sqrt{6}\\ &\Leftrightarrow \sqrt{2}\cos\left ( x-\displaystyle \frac{1}{4}\pi \right )=\displaystyle \frac{1}{2}\sqrt{6}\\ &\Leftrightarrow \: \: \, \cos \left ( x-\displaystyle \frac{1}{4}\pi \right )=\displaystyle \frac{\displaystyle \frac{1}{2}\sqrt{6}}{\sqrt{2}}=\displaystyle \frac{1}{2}\sqrt{3}\\ &\Leftrightarrow \: \: \,\cos \left ( x-\displaystyle \frac{1}{4}\pi \right )=\cos \displaystyle \frac{1}{6}\pi \\ &\Leftrightarrow \quad x-\displaystyle \frac{1}{4}\pi =\pm \displaystyle \frac{1}{6}\pi +k.2\pi \\ &\Leftrightarrow \quad x=\displaystyle \frac{1}{4}\pi\pm \displaystyle \frac{1}{6}\pi+k.2\pi \\ &\Leftrightarrow \quad x_{1}=\displaystyle \frac{5}{12}\pi+k.2\pi \: \: \textbf{atau}\\ &\: \: \: \quad\quad x_{2}=\displaystyle \frac{1}{12}\pi +k.2\pi \\ &k=0\Rightarrow x_{1}=\displaystyle \frac{5}{12}\pi\qquad (\color{blue}\textrm{memenuhi})\\ &\: \: \qquad\Rightarrow x_{2}=\displaystyle \color{red}\frac{1}{12}\pi\qquad \color{black}(\color{blue}\textrm{memenuhi})\\ &\textrm{Langkah berikutnya tidak diperlukan}\\ &\textrm{karena jawaban sudah kita dapatkan}\\ &\textrm{yaitu}:\: \: \color{red}\displaystyle \frac{1}{12}\pi \end{aligned} \end{array} \end{array}$.

$\begin{array}{ll}\\ 18.&\textrm{Himpunan penyelesaian persamaan}\\ &\qquad\: \: \cos x^{\circ}-\sqrt{3}\sin x^{\circ}=1\\ &\textrm{untuk}\: \: 0\leq x< 360\: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&\displaystyle \color{red}\left \{ 0,240 \right \} &&&\textrm{d}.&\displaystyle \left \{ 180,240 \right \} \\\\ \textrm{b}.&\displaystyle \left \{ 150,270 \right \}&\textrm{c}.&\displaystyle \left \{ 180,300 \right \}&\textrm{e}.&\displaystyle \left \{ 210,270 \right \} \end{array}\\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{array}{ll}\\ &\textrm{Diketahui dari soal bahwa}\\ &\cos x^{\circ}-\sqrt{3}\sin x^{\circ}=1,\\ &\textrm{lalu kita ubah posisinya menjadi}\\\\ &-\sqrt{3}\sin x+\cos x=1\: \: \left (\textbf{ingat}:a=-\sqrt{3},\: b=1 \right )\\ &-\sqrt{3}\sin x+\cos x=k\cos \left ( x-\theta \right )=1\\ &\begin{cases} k & =\sqrt{\left ( -\sqrt{3} \right )^{2}+\left ( 1 \right )^{2}}=\sqrt{4}=2 \\ \tan & \theta =\displaystyle \frac{a}{b}=\displaystyle \frac{-\sqrt{3}}{1}=-\sqrt{3}\Rightarrow \theta =300^{\circ} \end{cases}\\ &\quad\quad\textrm{sudut}\: \: \theta \: \: \textrm{di kuadran IV, karena}\: \: a<0,\: b>0\\ &\textrm{selanjutnya}\\ &\begin{aligned}&-\sqrt{3}\sin x+\cos x=k\cos \left ( x-\theta \right )=1\\ &\Leftrightarrow 2\cos\left ( x-300^{\circ} \right )=1\\ &\Leftrightarrow \: \: \, \cos \left ( x-300^{\circ} \right )=\displaystyle \frac{1}{2}\\ &\Leftrightarrow \: \: \,\cos \left ( x-300^{\circ} \right )=\cos 60^{\circ}\\ &\Leftrightarrow \quad x-300^{\circ} =\pm 60^{\circ}+k.360^{\circ}\\ &\Leftrightarrow \quad x=300^{\circ}\pm 60^{\circ}+k.360^{\circ}\\ &k=0\Rightarrow x_{1}=300^{\circ}+60^{\circ}=360^{\circ}=0^{\circ}\: \: (\color{blue}\textrm{mm})\\ & \qquad\qquad\quad\color{black}\textrm{atau}\\ &\qquad\qquad x_{2}=300^{\circ}-60^{\circ}=240^{\circ}\: \: (\color{blue}\textrm{mm})\\ &k=1\Rightarrow x=300^{\circ}\pm 60^{\circ}+360^{\circ}\quad (\color{red}\textrm{tm})\\ \end{aligned} \\ &\textbf{HP}=\left \{0^{\circ},240^{\circ} \right \} \end{array} \end{array}$

$\begin{array}{ll}\\ 19.&\textrm{Diketahui}\: \: \alpha -\beta =\displaystyle \frac{\pi }{3}\: \: \textrm{dan}\: \: \sin \alpha \sin \beta =\displaystyle \frac{1}{4}\\ &\textrm{dengan}\: \: \alpha \: \: \textrm{dan}\: \: \beta \: \: \textrm{adalah sudut} \: \: \textbf{lancip}\\ &\textrm{Nilai dari}\: \: \cos \left ( \alpha +\beta \right )\: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&1&&&\textrm{d}.&\displaystyle \frac{1}{4}\\ \textrm{b}.&\displaystyle \frac{3}{4}&\textrm{c}.&\displaystyle \frac{1}{2}&\textrm{e}.&\color{red}\displaystyle 0 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa}\\ &\bullet \quad\alpha -\beta =\displaystyle \frac{\pi }{3}\: \: \textrm{dan}\: \: \sin \alpha \sin \beta =\displaystyle \frac{1}{4}\\ &\bullet \quad\textrm{dengan}\: \: \alpha \: \: \textrm{dan}\: \: \beta \: \: \textrm{sudut} \: \: \textbf{lancip}\\ &\qquad \textrm{akibatnya semua sudut dikuadran I}\\ &\qquad \textrm{sehingga}\color{purple}\begin{cases} \sin & =+ \\ \cos & =+ \\ \tan & =+ \end{cases}\\ &\textrm{ditanya}\: \: \cos \left ( \alpha +\beta \right ),\: \: \textrm{maka}\\ &\textrm{sebagai langkah awal kita adalah}:\\ &\cos \left ( \alpha -\beta \right )=\cos \left ( \displaystyle \frac{\pi }{3} \right )\\ &\Leftrightarrow \: \cos \alpha \cos \beta +\sin \alpha \sin \beta =\displaystyle \frac{1}{2}\\ &\Leftrightarrow \: \cos \alpha \cos \beta+\displaystyle \frac{1}{4} =\displaystyle \frac{1}{2}\\ &\Leftrightarrow \: \cos \alpha \cos \beta =\displaystyle \frac{1}{2}-\displaystyle \frac{1}{4}=\displaystyle \frac{1}{4}\\ &\textbf{Selanjutnya nilai dari}\\ &\cos \left ( \alpha +\beta \right )\\ &=\cos \alpha \cos \beta -\sin \alpha \sin \beta \\ &=\displaystyle \frac{1}{4}-\displaystyle \frac{1}{4}=0\\ \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 20.&\textrm{Nilai}\: \: \sin 75^{\circ}-\sin 165^{\circ}\: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&\displaystyle \frac{1}{4}\sqrt{2}&&&\textrm{d}.&\color{red}\displaystyle \frac{1}{2}\sqrt{2}\\\\ \textrm{b}.&\displaystyle \frac{1}{4}\sqrt{3}&\textrm{c}.&\displaystyle \frac{1}{4}\sqrt{6}&\textrm{e}.&\displaystyle \frac{1}{2}\sqrt{6} \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\sin 75^{\circ}-\sin 165^{\circ}\\ &=2\cos \left ( \displaystyle \frac{75^{\circ}+165^{\circ}}{2} \right )\sin \left ( \displaystyle \frac{75^{\circ}-165^{\circ}}{2} \right )\\ &=2\cos \displaystyle \frac{240^{\circ}}{2}\sin \left (-\displaystyle \frac{90^{\circ}}{2} \right ) \\ &=2\cos 120^{\circ}\sin \left ( -45^{\circ} \right )\\ &=2\left (-\cos 60^{\circ} \right )\left (- \sin 45^{\circ} \right )\\ &=2\left ( -\displaystyle \frac{1}{2} \right )\left ( -\displaystyle \frac{1}{2}\sqrt{2} \right )\\ &=\color{red}\displaystyle \frac{1}{2}\sqrt{2} \end{aligned} \end{array}$.


Soal dan jawaban Persiapan Semester gasal Kelas XI Matematika Peminatan Bagian Ketiga

$\begin{array}{ll}\\ 11.&\textrm{Grafik fungsi trigonometri pada gambar}\\ &\textrm{berikut adalah}\: .... \end{array}$.

$.\quad\begin{array}{ll}\\ &\textrm{a}.\quad \displaystyle y=2\cos x \\\\ &\textrm{b}.\quad \displaystyle y=\cos 2x \\\\ &\textrm{c}.\quad \displaystyle y=\cos \displaystyle \frac{1}{2}x \\\\ &\textrm{d}.\quad \displaystyle \color{red}y=2\cos 2x \\\\ &\textrm{e}.\quad \displaystyle y=2\cos \displaystyle \frac{1}{2}x \\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Dari grafik tampak jelas bahwa}\\ &\textrm{gambar di atas adalah garfik}\\ &\textrm{fungsi cosinus di geser ke}\\ & \textbf{atas dan ke bawah}\\ &\textrm{dengan}\: \: \textbf{amplitudo}\: \: 2\\ &\textrm{dan}\: \: \textbf{periodenya}\: \: \displaystyle \frac{360^{\circ}}{2}=180^{\circ}=\pi ,\\ & \textrm{maka}\\ &\textrm{bentuk persamaan}\: \: \textbf{grafik fungsinya}\\ &y=\color{red}2\cos 2x \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 12.&\textrm{Grafik fungsi trigonometri pada gambar}\\ &\textrm{berikut adalah}\: .... \end{array}$.

$.\quad\begin{array}{ll}\\ &\textrm{a}.\quad \displaystyle y=2\sin \left (2x+\pi \right ) \\\\ &\textrm{b}.\quad \displaystyle y=\sin \left (2x-\displaystyle \frac{1}{2}\pi \right ) \\\\ &\textrm{c}.\quad \displaystyle y=2\sin \left (2x-\displaystyle \frac{1}{2}\pi \right ) \\\\ &\textrm{d}.\quad \displaystyle y=\sin \left (2x+\displaystyle \frac{1}{2}\pi \right ) \\\\ &\textrm{e}.\quad \displaystyle \color{red}y=2\sin \displaystyle \left (x+\displaystyle \frac{1}{2}\pi \right ) \\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Dari grafik tampak jelas bahwa}\\ &\textrm{gambar di atas adalah garfik}\\ &\textrm{fungsi cosinus di geser ke}\: \: \textbf{kiri}\\ &\textrm{dengan}\: \: \textbf{amplitudo}\: \: 2\\ &\textrm{dan}\: \: \textbf{periodenya}\: \: \displaystyle \frac{360^{\circ}}{1}=360^{\circ}=2\pi ,\\ &\textrm{maka}\\ &\textrm{bentuk persamaan}\: \: \textbf{grafik fungsinya}\\ &y=\color{red}2\sin \left ( x+\displaystyle kx \right )\\ &\textrm{dengan}\: \: +k\: \: \textrm{adalah}\\ &\textbf{besar geseran ke kiri}\: \: \displaystyle \frac{1}{2}\pi \: \: \textrm{atau}\: \: 90^{\circ}\\ &\textrm{Jadi},\: \: y=\color{red}2\sin (x+\displaystyle \frac{1}{2}\pi )^{\circ} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 13.&\textrm{Himpunan penyelesaian dari persamaan}\\ &\sin x=\sin \displaystyle \frac{2}{10}\pi \: \: \textrm{untuk}\: \: 0^{\circ}\leq x\leq 360^{\circ}\\ &\textrm{adalah}\: ....\\\\ &\textrm{a}.\quad \displaystyle \left \{ \displaystyle \frac{22}{10}\pi ,\displaystyle \frac{8}{10}\pi \right \} \\\\ &\textrm{b}.\quad \displaystyle \left \{ \displaystyle \frac{2}{10}\pi ,\displaystyle \frac{28}{10}\pi \right \} \\\\ &\textrm{c}.\quad \displaystyle \color{red}\left \{ \displaystyle \frac{2}{10}\pi ,\displaystyle \frac{8}{10}\pi \right \} \\\\ &\textrm{d}.\quad \displaystyle \left \{ \displaystyle \frac{22}{10}\pi ,\displaystyle \frac{28}{10}\pi \right \} \\\\ &\textrm{e}.\quad \displaystyle \left \{ \displaystyle \frac{12}{10}\pi ,\displaystyle \frac{8}{10}\pi \right \} \\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{array}{ll}\\ &\begin{aligned} & \sin x=\sin \displaystyle \frac{2}{10}\pi \\ &\Leftrightarrow \: \: x_{1}=\displaystyle \frac{2}{10}\pi+k.2\pi \: \: \: \: \color{blue}\textrm{atau}\\ &\Leftrightarrow \quad x_{2} =\left (\pi -\displaystyle \frac{2}{10}\pi \right )+k.2\pi=\displaystyle \frac{8}{10}\pi +k.2\pi \\ &k=0\Rightarrow x_{1}=\displaystyle \frac{2}{10}\pi\: \: (\color{blue}\textrm{mm})\: \: \color{black}\textrm{atau}\\ &\qquad\qquad x_{2}=\displaystyle \frac{8}{10}\pi\: \: (\color{blue}\textrm{mm})\\ &k=1\Rightarrow x_{1,2}=....+2\pi \quad (\color{red}\textrm{tidak memenuhi})\\ \end{aligned} \\ &\textbf{HP}=\color{red}\left \{\displaystyle \frac{2}{10}\pi,\: \displaystyle \frac{8}{10}\pi \right \} \end{array} \end{array}$.

$\begin{array}{ll}\\ 14.&\textrm{Himpunan penyelesaian dari persamaan}\\ &\tan \left ( 2x-\displaystyle \frac{1}{4}\pi \right )=\tan \displaystyle \frac{1}{4}\pi \: \: \textrm{untuk}\: \: 0^{\circ}\leq x\leq 360^{\circ}\\ &\textrm{adalah}\: ....\\\\ &\textrm{a}.\quad \displaystyle \left \{ \displaystyle \frac{1}{3}\pi ,\pi ,\displaystyle \frac{5}{3}\pi ,\displaystyle \frac{7}{3}\pi \right \} \\\\ &\textrm{b}.\quad \displaystyle \left \{ \displaystyle \frac{1}{4}\pi ,\displaystyle \frac{3}{5}\pi ,\frac{5}{4}\pi ,\frac{8}{5}\pi \right \} \\\\ &\textrm{c}.\quad \displaystyle \left \{ \displaystyle \frac{1}{4}\pi ,\displaystyle \frac{3}{4}\pi ,\frac{6}{4}\pi ,\displaystyle \frac{7}{4}\pi \right \} \\\\ &\textrm{d}.\quad \displaystyle \left \{ \displaystyle \frac{2}{4}\pi ,\displaystyle \frac{3}{4}\pi ,\pi ,\displaystyle \frac{7}{4}\pi \right \} \\\\ &\textrm{e}.\quad \displaystyle \color{red}\left \{ \displaystyle \frac{1}{4}\pi ,\frac{3}{4}\pi ,\frac{5}{4}\pi ,\displaystyle \frac{7}{4}\pi \right \} \\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{array}{ll}\\ &\begin{aligned} & \tan \left ( 2x-\displaystyle \frac{1}{4}\pi \right )=\tan \displaystyle \frac{1}{4}\pi \\ &\Leftrightarrow \: \: 2x-\displaystyle \frac{1}{4}\pi=\displaystyle \frac{1}{4}\pi+k.\pi\\ &\Leftrightarrow \quad 2x =\displaystyle \frac{2}{4}\pi +k.\pi \\ &\Leftrightarrow \quad x =\displaystyle \frac{1}{4}\pi +k.\frac{\pi}{2} \\ &k=0\Rightarrow x=\displaystyle \frac{1}{4}\pi\: \: (\color{blue}\textrm{mm})\\ &k=1\Rightarrow x=\displaystyle \frac{1}{4}\pi+\frac{\pi}{2}=\displaystyle \frac{3}{4}\pi \: \: (\color{blue}\textrm{mm}) \\ &k=2\Rightarrow x=\displaystyle \frac{1}{4}\pi+\pi =\displaystyle \frac{5}{4}\pi \: \: (\color{blue}\textrm{mm}) \\ &k=3\Rightarrow x=\displaystyle \frac{1}{4}\pi+\frac{3\pi}{2}=\displaystyle \frac{7}{4}\pi \: \: (\color{blue}\textrm{mm}) \\ &k=4\Rightarrow x=\displaystyle \frac{1}{4}\pi+2\pi =\displaystyle \frac{9}{4}\pi \: \: (\color{red}\textrm{tidak memenuhi}) \\ \end{aligned} \\ &\textbf{HP}=\color{red}\color{red}\left \{\displaystyle \frac{1}{4}\pi,\: \displaystyle \frac{3}{4}\pi ,\frac{5}{4}\pi ,\frac{7}{4}\pi \right \} \end{array} \end{array}$.

$\begin{array}{ll}\\ 15.&\textrm{Himpunan penyelesaian dari persamaan}\\ &\cos 2x-2\cos x=-1\: \: \textrm{untuk}\: \: 0< x< 2\pi \\ &\textrm{adalah}\: ....\\\\ &\textrm{a}.\quad \color{red}\displaystyle \left \{ 0,\displaystyle \frac{1}{2}\pi ,\displaystyle \frac{3}{2}\pi, 2\pi \right \} \\\\ &\textrm{b}.\quad \displaystyle \left \{ 0,\displaystyle \frac{1}{2}\pi ,\displaystyle \frac{2}{3}\pi, 2\pi \right \} \\\\ &\textrm{c}.\quad \displaystyle \left \{ 0,\displaystyle \frac{1}{2}\pi ,\pi ,\displaystyle \frac{3}{2}\pi \right \} \\\\ &\textrm{d}.\quad \displaystyle \left \{ 0,\displaystyle \frac{1}{2}\pi ,\displaystyle \frac{2}{3}\pi \right \} \\\\ &\textrm{e}.\quad \displaystyle \left \{ 0,\displaystyle \frac{1}{2}\pi ,\pi \right \} \\\\ &\color{blue}\textbf{Jawab}:\\ &\begin{array}{ll}\\ &\begin{aligned} & \cos 2x-2\cos x=-1\\ &\Leftrightarrow \cos 2x-2\cos x+1=0\\ &\Leftrightarrow \left ( 2\cos ^{2}x-1 \right )-2\cos x+1=0 \\ &\Leftrightarrow 2\cos x\left ( \cos x-1 \right )=0\\ &\Leftrightarrow \cos x=0\: \: \textrm{atau}\: \: \cos x=1\\ &\Leftrightarrow \cos x=\cos \displaystyle \frac{1}{2}\pi \: \: \textrm{atau}\: \: \cos x=\cos 0\\ &\Leftrightarrow x_{1,2}=\pm \displaystyle \frac{1}{2}\pi +k.2\pi \: \: \textrm{atau}\: \: x_{3}=k.2\pi\\ &\textrm{maka}\\ &k=0\Rightarrow x_{1}=-\displaystyle \frac{1}{2}\pi\: \: (\color{red}\textrm{tm})\: \: \color{black}\textrm{atau}\\ &\qquad\qquad x_{2}=\displaystyle \frac{1}{2}\pi\: \: (\color{blue}\textrm{mm})\\ &\qquad\qquad x_{3}=\displaystyle 0\: \: (\color{blue}\textrm{mm})\\ &k=1\Rightarrow x_{1}=\displaystyle \frac{3}{2}\pi \quad (\color{blue}\textrm{mm})\\ &\qquad\qquad x_{2}=\displaystyle \frac{5}{2}\pi\: \: (\color{red}\textrm{tm})\\ &\qquad\qquad x_{3}=\displaystyle 2\pi\: \: (\color{blue}\textrm{mm})\\ \end{aligned} \end{array} \end{array}$

Soal dan jawaban Persiapan Semester gasal Kelas XI Matematika Peminatan Bagian Kedua

$\begin{array}{ll}\\ 6.&\textrm{Nilai dari}\: \: \displaystyle \frac{\sin 49^{\circ}}{\cos 41^{\circ}}-\displaystyle \frac{\cos 17^{\circ}}{\sin 73^{\circ}}\\ &\textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&-1&&&\textrm{d}.&0,143\\ \textrm{b}.&\displaystyle -0,321&\textrm{c}.&\color{red}0&\textrm{e}.&\displaystyle 0,321 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\displaystyle \frac{\sin 49^{\circ}}{\cos 41^{\circ}}-\displaystyle \frac{\cos 17^{\circ}}{\sin 73^{\circ}}\\ &=\displaystyle \frac{\sin 49^{\circ}}{\cos \left (90^{\circ}-49^{\circ} \right )}-\displaystyle \frac{\cos 17^{\circ}}{\sin \left (90^{\circ}-17^{\circ} \right )}\\ &=\displaystyle \frac{\sin 49^{\circ}}{\sin 49^{\circ}}-\displaystyle \frac{\cos 17^{\circ}}{\cos 17^{\circ}}\\ &=1-1\\ &=0 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 7.&\textrm{Nilai dari}\\ &p=r\sin \alpha \cos \beta \\ &q=r\sin \alpha \sin \beta \\ &s=r\cos \alpha \\ &\textrm{maka pernyataan berikut yang}\\ &\textrm{tepat adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&\color{red}p^{2}+t^{2}+s^{2}=r^{2}&&&\\ \textrm{b}.&p^{2}-t^{2}+s^{2}=r^{2} \\ \textrm{c}.&p^{2}+t^{2}-s^{2}=r^{2}&\\ \textrm{d}.&-p^{2}+t^{2}+s^{2}=r^{2}&\\ \textrm{e}.&-p^{2}-t^{2}+s^{2}=r^{2} \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Saat}\\ &p^{2}+q^{2}\: \: \textrm{maka hasilnya adalah}\\ &\color{purple}\begin{array}{lll}\\ p^{2}&=r^{2}\sin^{2} \alpha \cos^{2} \beta&\\ q^{2}&=r^{2}\sin^{2} \alpha \sin^{2} \beta&+\\\hline &=r^{2}\sin ^{2}\alpha \left ( \cos ^{2}\beta +\sin ^{2}\beta \right )\\ &=r^{2}\sin ^{2}\alpha (1)\\ &=r^{2}\sin ^{2}\alpha \end{array}\\ &\textrm{Dan saat}\\ &p^{2}+q^{2}+s^{2}\: \: \textrm{akan diperoleh hasil}\\ &\color{purple}\begin{array}{lll}\\ p^{2}+q^{2}&=r^{2}\sin ^{2}\alpha &\\ \qquad s^{2}&=r^{2}\cos ^{2}\alpha &+\\\hline &=r^{2}\sin ^{2}\alpha+r^{2}\cos ^{2}\alpha\\ &=r^{2}\left ( \sin ^{2}\alpha+\cos ^{2}\alpha \right )\\ &=r^{2}(1)\\ &=r^{2} \end{array}\\ \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 8.&\textrm{Nilai dari}\\ & \displaystyle \frac{\cos \left ( 90^{\circ}+\theta \right )\sec \left ( 2\pi -\theta \right )\tan \left ( \pi -\theta \right )}{\sec \left ( \theta -2\pi \right )\sin \left ( 540^{\circ}+\theta \right )\cot \left ( \theta -90^{\circ} \right )}\\ &\textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&-1&&&\textrm{d}.&-\tan \theta \\ \textrm{b}.&\displaystyle 0&\textrm{c}.&\color{red}1&\textrm{e}.&\displaystyle \tan \theta \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\color{purple}\textrm{Ingat kembali sudut-sudut}\\ &\color{purple}\textrm{yang berelasi dari kudran selain I}\\ &\color{purple}\textrm{ke kuadran I beserta tandanya}\\ &\displaystyle \frac{\cos \left ( 90^{\circ}+\theta \right )\sec \left ( 2\pi -\theta \right )\tan \left ( \pi -\theta \right )}{\sec \left ( \theta -2\pi \right )\sin \left ( 540^{\circ}+\theta \right )\cot \left ( \theta -90^{\circ} \right )}\\ &=\displaystyle \frac{\left (-\sin \theta \right ) .\sec \theta .\left (-\tan \theta \right )}{\sec \theta .\left (-\sin \theta \right ). \left (-\tan \theta \right )}\\ &=1 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 9.&\textrm{Diketahui bahwa}\\ &\sin \theta +\cos \theta =\displaystyle \frac{1}{2} \\ &\textrm{maka nilai dari}\\ &\sin ^{3}\theta +\cos ^{3}\theta \: \: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&\displaystyle \frac{1}{2}&&&\textrm{d}.&\displaystyle \frac{5}{8} \\\\ \textrm{b}.& \displaystyle \frac{3}{4}&\textrm{c}.&\displaystyle \frac{9}{15}&\textrm{e}.&\color{red}\displaystyle \frac{11}{16} \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa}\\ &\sin \theta +\cos \theta =\displaystyle \frac{1}{2}\\ &\Leftrightarrow \: \left (\sin \theta +\cos \theta \right )^{2} =\displaystyle \frac{1}{4}\\ &\Leftrightarrow \: \sin ^{2}\theta +\cos ^{2}\theta +2\sin \theta \cos \theta =\displaystyle \frac{1}{4}\\ &\Leftrightarrow \: 1+2\sin \theta \cos \theta =\displaystyle \frac{1}{4}\\ &\Leftrightarrow \: 2\sin \theta \cos \theta =-\displaystyle \frac{3}{4}\\ &\Leftrightarrow \: \sin \theta \cos \theta =-\displaystyle \frac{3}{8}\\ &\textbf{Selanjutnya}\\ &\color{purple}\sin ^{3}\theta +\cos ^{3}\theta\\ &=\color{purple}\left ( \sin \theta +\cos \theta \right )\left ( \sin ^{2}\theta -\sin \theta \cos \theta +\cos ^{2}\theta \right )\\ &=\color{purple}\left ( \displaystyle \frac{1}{2} \right )\left ( 1-\left ( -\displaystyle \frac{3}{8} \right ) \right ) \\ &=\color{purple}\displaystyle \frac{1}{2}\times \displaystyle \frac{11}{8}\\ &=\color{red}\displaystyle \frac{11}{16} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 10.&\textrm{Jika diketahui}\: \: \: \displaystyle \frac{3}{2}\pi <x<2\pi \\ &\textrm{dan}\: \: \: \tan x=m,\\ &\textrm{maka nilai dari}\: \: \sin x \cos x \: \: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&\displaystyle -\frac{1}{m^{2}+1}&&&\textrm{d}.&\displaystyle -\frac{m}{m^{2}-1} \\\\ \textrm{b}.& \color{red}\displaystyle -\frac{m}{m^{2}+1}&\textrm{c}.&\displaystyle \frac{m}{m^{2}+1}&\textrm{e}.&\displaystyle \frac{m}{m^{2}-1} \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa}\: \: \displaystyle \frac{3}{2}\pi <x<2\pi\\ &\textrm{ini daerah Kwadran IV, akibatnya adalah nilai}\\ &\begin{cases} \sin x & = -\\ \cos x & =+ \\ \tan x & =- \end{cases}\\ &\textbf{Selanjutnya ada pernyataan}\: \: \tan x=m\\ &\textrm{ini artinya}\: \: \tan x=\displaystyle \frac{m}{1}\\ &\textbf{Perhatikanlah ilustrasi gambar berikut} \end{aligned} \end{array}$.

$.\qquad\begin{aligned} &\textrm{maka nilai dari}\\ &\sin x\cos x\: \: \left (\textrm{ingat yang diminta di Kwadran IV} \right )\\ &=\left (-\displaystyle \frac{m}{\sqrt{m^{2}+1}} \right )\times \left (+\displaystyle \frac{1}{\sqrt{m^{2}+1}} \right )\\ &=\color{red}-\displaystyle \frac{m}{m^{2}+1} \end{aligned}$

Soal dan jawaban Persiapan Semester gasal Kelas XI Matematika Peminatan Bagian Pertama

$\begin{array}{ll}\\ 1.&\textrm{Nilai}\: \: 105^{\circ}\: \: \textrm{jika dinyatakan ke radian}\\ &\textrm{adalah}\: \: ....\: \: \textrm{radian}\\\\ &\textrm{a}.\quad \displaystyle \frac{1}{3}\pi \\\\ &\textrm{b}.\quad \displaystyle \frac{5}{6}\pi \\\\ &\textrm{c}.\quad \displaystyle \frac{5}{12}\pi \\\\ &\textrm{d}.\quad \color{red}\displaystyle \frac{7}{12}\pi \\\\ &\textrm{e}.\quad \displaystyle \frac{9}{12}\pi \\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{Diketah}&\textrm{ui bahwa}\\ 180^{\circ}&=\pi \: \: \: radian\\ 1^{\circ}&=\displaystyle \frac{\pi }{180}\: \: \: radian\\ 105\times 1^{\circ}&=105\times \displaystyle \frac{\pi }{180}\: \: \: radian\\ 105^{\circ}&=\displaystyle \frac{7}{12}\pi \: \: \: radian \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Nilai}\: \: \tan 240^{\circ} \: \: \: \textrm{adalah}\: \: ....\\\\ &\textrm{a}.\quad \displaystyle \color{red}\sqrt{3} \\\\ &\textrm{b}.\quad \displaystyle \frac{1}{3}\sqrt{3} \\\\ &\textrm{c}.\quad \displaystyle -\frac{1}{3}\sqrt{3} \\\\ &\textrm{d}.\quad \displaystyle \frac{1}{2}\sqrt{3} \\\\ &\textrm{e}.\quad \displaystyle -\sqrt{3} \\\\ &\textbf{Jawab}:\\ &\begin{aligned}\tan 240^{\circ}&=\tan \left ( 180^{\circ}+60^{\circ} \right )\\ &=\tan 60^{\circ}\\ &=\color{red}\sqrt{3}\\ \textbf{catatan}&: \textrm{ingat sudut berelasi} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 3.&\textrm{Perhatikanlah gambar berikut}\\ \end{array}$.

$.\qquad\begin{array}{ll}\\ &\textrm{Pada gambar di atas perbandingan}\\ &\sin \theta \: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad \sqrt{\displaystyle \frac{a^{2}-d^{2}}{f^{2}+g^{2}}} \\ &\textrm{b}.\quad \sqrt{\displaystyle \frac{a^{2}+b^{2}}{f^{2}+g^{2}}} \\ &\textrm{c}.\quad \sqrt{\displaystyle \frac{a^{2}-b^{2}}{f^{2}-g^{2}}} \\ &\textrm{d}.\quad \sqrt{\displaystyle \frac{a^{2}+b^{2}}{f^{2}-g^{2}}}\\ &\textrm{e}.\quad \color{red}\sqrt{\displaystyle \frac{a^{2}-b^{2}}{f^{2}+g^{2}}} \\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{Dari so}&\textrm{al diketahui bahwa}\\ \sin \theta &=\displaystyle \frac{c}{e}=\displaystyle \frac{\sqrt{a^{2}-b^{2}}}{\sqrt{f^{2}+g^{2}}}\\ &=\color{red}\sqrt{\displaystyle \frac{a^{2}-b^{2}}{f^{2}+g^{2}}} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 4.&\textrm{Nilai dari}\: \: \left ( \cos ^{2}17^{\circ}-\sin ^{2}73^{\circ} \right ) \textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&\color{red}0&&&\textrm{d}.&1\\ \textrm{b}.&\displaystyle \frac{1}{3}&\textrm{c}.&\displaystyle \frac{2}{\sqrt{3}}&\textrm{e}.&\displaystyle \frac{1}{2}\sqrt{3} \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\left ( \cos ^{2}17^{\circ}-\sin ^{2}73^{\circ} \right )\\ &=\left ( \cos ^{2}17^{\circ}-\left (\sin 73^{\circ} \right )^{2} \right )\\ &=\left ( \cos ^{2}17^{\circ}-\left (\sin \left ( 90^{\circ}-17^{\circ} \right ) \right )^{2} \right )\\ &=\left ( \cos ^{2}17^{\circ}-\cos ^{2}17^{\circ} \right )\\ &=0 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 5.&\textrm{Jika diketahui}\\ & \displaystyle \frac{x\csc ^{2}30^{\circ}\sec ^{2}45^{\circ}}{8\cos ^{2}45^{\circ}\sin ^{2}60^{\circ}}=\tan ^{2}60^{\circ}-\tan ^{2}30^{\circ},\\ & \textrm{maka nilai}\: \: x\: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.&-2&&&\textrm{d}.&\color{red}1\\ \textrm{b}.&\displaystyle -1&\textrm{c}.&0&\textrm{e}.&\displaystyle 2 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}&\displaystyle \frac{x\csc ^{2}30^{\circ}\sec ^{2}45^{\circ}}{8\cos ^{2}45^{\circ}\sin ^{2}60^{\circ}}=\tan ^{2}60^{\circ}-\tan ^{2}30^{\circ}\\ &\displaystyle \frac{x\left ( 4 \right )\left ( \displaystyle \frac{4}{2} \right )}{8\left ( \displaystyle \frac{2}{4} \right )\left ( \displaystyle \frac{3}{4} \right )}=3-\left ( \displaystyle \frac{1}{3} \right )\\ &\displaystyle \frac{8x}{3}=\displaystyle \frac{8}{3}\\ &x=1 \end{aligned} \end{array}$