Soal dan jawaban Persiapan Semester gasal Kelas XI Matematika Peminatan Bagian Ketujuh

31.Nilai daricosπ7cos2π7cos4π7adalah....a.18d.12b.14c.0e.13Jawab:Alternatif 1cosπ7cos2π7cos4π7×2sin2π72sin2π7=(sin4π7sin0)cosπ7cos4π72sin2π7=sin4π7cosπ7cos4π72sin2π7=(sin5π7+sin3π7)cos4π74sin2π7=sin5π7cos4π7+sin3π7cos4π74sin2π7=sin9π7+sinπ7+sin7π7+sin(π7)8sin2π7=sin2π7+sinπ7+0sinπ78sin2π7=sin2π78sin2π7=18Alternatif 2cosπ7cos2π7cos4π7=cos4π7cos2π7cosπ7=12(cos6π7+cos2π7)cosπ7=12(cos(ππ7)+cos2π7)cosπ7=12(cosπ7+cos2π7)cosπ7=12(cos2π7+cos2π7cosπ7)=14(cos2π7cos0+cos3π7+cosπ7)=14(cos0+cosπ7cos2π7+cos3π7)=14(1+12)=14×(12)=18.

Berikut penjelasan untuk  cosπ7cos2π7+cos3π7=12.

cosπ7cos2π7+cos3π7=cosπ7cos2π7+cos3π7×(2sin2π7)(2sin2π7)=2cosπ7sin2π72cos2π7sin2π7+2cos3π7sin2π72sin2π7=sin3π7sin(π7)(sin4π7sin0π7)+sin5π7sinπ72sin2π7=sin3π7+sinπ7sin4π7+sin5π7sinπ72sin2π7=sin3π7sin4π7+sin5π72sin2π7=sin(π4π7)sin4π7+sin(π2π7)2sin2π7=sin4π7sin4π7+sin2π72sin2π7=sin2π72sin2π7=12.

32.Nilai darisinπ14sin3π14sin9π14adalah....a.116d.12b.18c.14e.1Jawab:Perhatikan bahwasinπ14=sin(7π146π14)=sin(12π6π14)=cos6π14sin3π14=...=cos4π14sin9π14=...=sin5π14=cos2π14...sinπ14sin3π14sin9π14=cos6π14cos4π14cos2π14×2sin2π142sin2π14=cos6π14cos4π14sin4π142sin2π14silahkan dilanjutkan...=18.

33.Nilai daricosπ5cos2π5cos4π5cos8π5adalah....a.116d.116b.18c.0e.18Jawab:cosπ5cos2π5cos4π5cos8π5=cosπ5cos2π5cos4π5cos(π+3π5)=cosπ5cos2π5cos4π5(cos3π5)=cosπ5cos2π5cos4π5cos3π5=cosπ5cos2π5cos3π5cos4π5=cosπ5cos2π5cos3π5cos4π5×2sinπ52sinπ5=cosπ5cos2π5cos3π5(sinπsin3π5)2sinπ5=cosπ5cos2π5cos3π5sin3π52sinπ5=cosπ5cos3π5(cos2π5sin3π5)2sinπ5=cosπ5cos3π5(sinπsin(π5))4sinπ5=cosπ5cos3π5sinπ54sinπ5=cos3π5cosπ5sinπ54sinπ5=cos3π5(cosπ5sinπ5)4sinπ5=cos3π5(sin2π5sin0)8sinπ5=cos3π5sin2π58sinπ5=sinπsinπ516sinπ5=sinπ516sinπ5=116.

34.Nilai darisin18cos36adalah....a.16d.13b.15c.14e.12Jawab:sin18cos36=sin18cos36×2cos182cos18=cos36(sin36+sin0)4cos18=cos36sin364cos18=sin724cos18=sin(9018)4cos18=cos184cos18=14.

35.Nilai eksak darisin36adalah....a.1410+25d.514b.141025e.512c.5+14Jawab:Perhatikanlah ilustrasi gambar berikut.
.Perhatikan bahwaABCsama kakidenganAD=DC=CB=1,AC=xDiketahui pulaCDadalah garis bagisertaABCsebangunBCDakibatnya:perbandingan sisi yang bersesuaianakan sama,makaABBC=BCABADx1=1x1x(x1)=1x2x1=0x=1±52akibatnyaAB=AC=1+52Selanjutnya gunakanaturan sinusABsinC=BCsinAABBC=sinCsinA(1+52)1=sin72sin361+52=2sin36cos36sin361+52=2cos36cos36=⇔1+54Dari fakta di atas kita akan denganmudah menentukan nilai sinusnyayaitu dengan menggunakanidentitas trigonometri berikut:sin236+cos236=1sin236=1cos236sin36=1cos236=1(1+54)2=16+2516=102516=141025



Tidak ada komentar:

Posting Komentar

Informasi