Persamaan Logaritma 1

 A. Persamaan Logaritma Bentuk  $^{a}\log f(x)=\: ^{a}\log p$.

Syarat yang harus dipenuhi numerus harus berupa bilangan positif demikian juga bilangan basisnya dan khus bilangan basisnya ketambahan syarat yang harus terpenuhi yaitu tidak boleh sama dengan 1.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Tentukan himpunan penyelesaian dari}\\ &\textrm{a}.\quad \log (4x-5)=\log 3\\ &\textrm{b}.\quad \log (2x^{2}-x)=1\\ &\textrm{c}.\quad ^{3}\log (x^{2}-3x+5)=1\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad &\textrm{Diketahui numerus}:4x-5\\ &\textrm{1. Syarat numerus}:\: f(x)>0\\ &\quad 4x-5>0\Leftrightarrow x>\displaystyle \frac{5}{4}\\ &\textrm{2. Persamaan}\\ &\quad \log (4x-5)=\log 3\\ &\quad \Leftrightarrow 4x-5=3\\ &\quad \Leftrightarrow 4x=8\\ &\quad \Leftrightarrow x=2\\ &\textrm{3. Simpulan}\\ &\quad \textrm{Karena}\: \: x>\displaystyle \frac{5}{4},\\ &\quad \textrm{maka}\: \: x=2\: \: \textrm{memenuhi}\\ &\quad \textrm{Jadi},\: \: \textrm{HP}=\left \{ 2 \right \} \end{aligned}\\ &\begin{aligned}\textrm{b}.\quad &\textrm{Diketahui numerus}:2x^{2}-x\\ &\textrm{1. Syarat numerus}:\: f(x)>0\\ &\quad 2x^{2}-x>0\Leftrightarrow x(2x-1)>0\\ &\quad \Leftrightarrow x<0\: \: \textrm{atau}\: \: x>\displaystyle \frac{1}{2}\\ &\textrm{2. Persamaan}\\ &\quad \log (2x^{2}-x)=1\\ &\quad \log (2x^{2}-x)=\, \log 10\\ &\quad \Leftrightarrow 2x^{2}-x=10\\ &\quad \Leftrightarrow 2x^{2}-x-10=0\\ &\quad \Leftrightarrow (2x-5)(x+2)=0\\ &\quad \Leftrightarrow x=-2\: \: \textrm{atau}\: \: x=\displaystyle \frac{5}{2}\\ &\textrm{3. Simpulan}\\ &\quad \textrm{Karena nilai}\: \: x\: \: \textrm{memenuhi}\\ &\quad \textrm{syarat numerus}\: \: 2x^{2}-x>0\\ &\quad \textrm{maka}\: \: x=-2\: \: \textrm{dan}\: \: x=\displaystyle \frac{5}{2}\: \: \textrm{memenuhi}\\ &\quad \textrm{Jadi},\: \: \textrm{HP}=\left \{ -2,\displaystyle \frac{5}{2} \right \} \end{aligned}\\ &\begin{aligned}\textrm{c}.\quad &\textrm{Diketahui numerus}:x^{2}-3x+5\\ &\textrm{1. Syarat numerus}:\: f(x)>0\: \: \color{red}\textrm{memenuhi}.\\ &\quad x^{2}-3x+5>0\Leftrightarrow \textrm{Nilai}\: D=b^{2}-4ac>0\\ &\quad  \color{red}\textrm{artinya numerus definit positif}\\ &\textrm{2. Persamaan}\\ &\quad ^{3}\log (x^{2}-3x+5)=1\\ &\quad ^{3}\log (x^{2}-3x+5)=\, ^{3}\log 3\\ &\quad \Leftrightarrow x^{2}-3x+5=3\\ &\quad \Leftrightarrow x^{2}-3x+2=0\\ &\quad \Leftrightarrow (x-1)(x-2)=0\\ &\quad \Leftrightarrow x=1\: \: \textrm{atau}\: \: x=2\\ &\textrm{3. Simpulan}\\ &\quad \textrm{Karena nilai}\: \: x\: \: \textrm{memenuhi}\\ &\quad \textrm{syarat numerus}\: \: x^{2}-3x+5>0\\ &\quad \textrm{maka}\: \: x=1\: \: \textrm{dan}\: \: x=2\: \: \textrm{memenuhi}\\ &\quad \textrm{Jadi},\: \: \textrm{HP}=\left \{ 1,2 \right \} \end{aligned} \end{array}$.

Untuk materi difinit positif silahkan klik di sini

$\begin{array}{ll}\\ 2.&\textrm{Tentukan himpunan penyelesaian dari}\\ & \log x+\, \log (2x-1)=1\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Persamaan di atas adalah persamaan}\\ &\textrm{logaritma model}:\: ^{a}\log f(x)=\, ^{a}\log p.\\ &\textrm{dengan bentuknya}:\\ &\qquad \color{blue}^{a}\log f_{1}(x)+\, ^{a}\log f_{2}(x)=\, ^{a}\log p\\ &\textrm{Diketahui numerus}:\\ &\qquad f_{1}(x)=x\: \: \textrm{dan}\: \: f_{2}(x)=2x-1\\ &\textrm{1. Syarat numerus}:\: f(x)>0\\ &\qquad \color{purple}\begin{array}{c|c} f_{1}(x)&f_{2}(x)\\\hline \begin{aligned}&x>0\\ &\\ & \end{aligned}&\begin{aligned}&2x-1>0\\ &2x>1\\ &x>\displaystyle \frac{1}{2} \end{aligned} \end{array}\\ &\: \quad \textrm{Sehingga syarat numerusnya}\: :\: x>\displaystyle \frac{1}{2}\\ &\textrm{2. Persamaan}\\ &\quad \log (2x^{2}-x)=1\\ &\quad \log (2x^{2}-x)=\, \log 10\\ &\quad \Leftrightarrow 2x^{2}-x=10\\ &\quad \Leftrightarrow 2x^{2}-x-10=0\\ &\quad \Leftrightarrow (2x-5)(x+2)=0\\ &\quad \Leftrightarrow x=-2\: \: \textrm{atau}\: \: x=\displaystyle \frac{5}{2}\\ &\textrm{3. Simpulan}\\ &\quad \textrm{Nilai}\: \: x\: \: \textrm{yang memenuhi}\\ &\quad \textrm{syarat numerus}\: \: 2x^{2}-x>0\\ &\quad \textrm{hanya ada satu, yaitu}\: :\: x=\color{blue}\displaystyle \frac{5}{2}\\ &\quad \textrm{Jadi},\: \: \textrm{HP}=\left \{\displaystyle \frac{5}{2} \right \} \end{aligned} \end{array}$.

Catatan:

Coba bandingkan penyelesaian no. 1.b dan no. 2, secara sifat operasi logaritma soal sama, tetapi karena spesifikasi dari numerus tiap tipe soal, maka perlakuannya berbeda.

$\LARGE\colorbox{aqua}{LATIHAN SOAL}$.

$\begin{array}{ll}\\ 3.&\textrm{Tentukan himpunan penyelesaian dari}\\ &\textrm{a}.\quad ^{3}\log (5x-4)=2\\ &\textrm{b}.\quad \log x+\log (2x-1)=1\\ &\textrm{c}.\quad \log (2x^{2}+6x-5)=1\\ &\textrm{d}.\quad ^{2}\log (x^{2}-4x+6)=1\\ &\textrm{e}.\quad ^{2}\log (x-4)+\, ^{2}\log (x-6)=3\\\\ & \end{array}$

Tidak ada komentar:

Posting Komentar

Informasi