Persamaan Logaritma 3

C. Persamaan Logaritma Bentuk  $^{a}\log f(x)=\: ^{a}\log g(x)$.

Syarat penyelesaian dari bentuk ini adalah numerusnya harus positif serta basisnya juga harus positif dan tidak berupa angka 1.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Tentukan himpunan penyelesaian dari}\\ &\textrm{a}.\quad 2\log x=\log (x+6)\\ &\textrm{b}.\quad \log (2x-3)=\log (x^{2}-3x+1)\\ &\textrm{c}.\quad ^{3}\log (x^{2}+3x+2)=\, ^{3}\log (5x+5)\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textbf{a}.\: \: \: \textrm{Dik}&\textrm{etahui}\\ &2\log x=\log (x+6)\\ &\Leftrightarrow \log x^{2}=\log (x+6)\\ (\ast )\: \: &\color{blue}\textrm{Syarat numerus}\\ &\begin{array}{l|l} \begin{aligned}&f(x)>0\\ \Leftrightarrow \: \: &x^{2}>0\\ \Leftrightarrow \: \: &x>0 \end{aligned}&\begin{aligned}&g(x)>0\\ \Leftrightarrow \: \: &x+6>0\\ \Leftrightarrow \: \: &x>-6 \end{aligned} \end{array}\\ &\textrm{Sehingga syarat numerusnya},\: \: \color{red}x>0\\ (\ast )\: \: &\color{blue}\textrm{Syarat kedua},\: \: \color{black}f(x)=g(x)\\ &\Leftrightarrow \quad x^{2}=x+6\\ &\Leftrightarrow \quad x^{2}-x-6=0\\ &\Leftrightarrow \quad (x+2)(x-3)=0\\ &\Leftrightarrow \quad x=-2\: \: \textrm{atau}\: \: x=3\\ &\textrm{Karena}\: \: x>0,\: \: \textrm{yang memenuhi}\: \: x=3\\ (\ast )\: \: &\textrm{Jadi},\: \: \textrm{HP}=\color{red}\left \{ 3 \right \} \end{aligned}\\ &\begin{aligned}\textbf{b}.\: \: \: \textrm{Dik}&\textrm{etahui}\\ &\log (2x-3)=\log (x^{2}-3x+1)\\ (\ast )\: \: &\color{blue}\textrm{Syarat numerus}\\ &\begin{array}{l|l} \begin{aligned}&f(x)>0\\ \Leftrightarrow \: \: &2x-3>0\\ \Leftrightarrow \: \: &2x>3\\ \Leftrightarrow \: \: &x>\displaystyle \frac{3}{2} \end{aligned}&\begin{aligned}&g(x)>0\\ \Leftrightarrow \: \: &x^{2}-3x+1>0\\ \Leftrightarrow \: \: &x<\displaystyle \frac{3-\sqrt{5}}{2}\\ \quad \: \: &\color{red}\textrm{atau}\: \: \color{black}x>\displaystyle \frac{3+\sqrt{5}}{2} \end{aligned} \end{array}\\ &\textrm{Syarat numerusnya},\: \: \color{red}x>\displaystyle \frac{3+\sqrt{5}}{2}\\ (\ast )\: \: &\color{blue}\textrm{Syarat kedua},\: \: \color{black}f(x)=g(x)\\ &\Leftrightarrow \quad (2x-3)=(x^{2}-3x+1)\\ &\Leftrightarrow \quad -x^{2}+5x-4=0\\ &\Leftrightarrow \quad x^{2}-5x+4=0\\ &\Leftrightarrow \quad (x-1)(x-4)=0\\ &\Leftrightarrow \quad x=1\: \: \textrm{atau}\: \: x=4\\ &\textrm{Karena}\: \: x>\displaystyle \frac{3+\sqrt{5}}{2},\\ & \textrm{yang memenuhi adalah}\: \: x=4\\ (\ast )\: \: &\textrm{Jadi},\: \: \textrm{HP}=\color{red}\left \{ 4 \right \} \end{aligned}\\ &\begin{aligned}\textbf{c}.\: \: \: \textrm{Dik}&\textrm{etahui}\\ &^{3}\log (x^{2}+3x+2)=\, ^{3}\log (5x+5)\\ (\ast )\: \: &\color{blue}\textrm{Syarat numerus}\\ &\begin{array}{l|l}\begin{aligned}&f(x)>0\\ \Leftrightarrow \: \: &x^{2}+3x+2>0\\ \Leftrightarrow \: \: &(x+1)(x+2)>0\\ \Leftrightarrow \: \: &x<-2\: \: \textrm{atau}\: \: x>-1 \end{aligned}&\begin{aligned}&g(x)>0\\ \Leftrightarrow \: \: &5x+5>0\\ \Leftrightarrow \: \: &x+1>0\\ \Leftrightarrow \: \: &x>-1\\ \end{aligned} \end{array}\\ &\textrm{Syarat numerusnya},\: \: \color{red}x>-1\\ (\ast )\: \: &\color{blue}\textrm{Syarat kedua},\: \: \color{black}f(x)=g(x)\\ &\Leftrightarrow \quad x^{2}+3x+2=5x+5\\ &\Leftrightarrow \quad x^{2}-2x-3=0\\ &\Leftrightarrow \quad (x+1)(x-3)=0\\ &\Leftrightarrow \quad x=-1\: \: \textrm{atau}\: \: x=3\\ &\textrm{Karena}\: \: x>-1,\\ & \textrm{yang memenuhi adalah}\: \: x=3\\ (\ast )\: \: &\textrm{Jadi},\: \: \textrm{HP}=\color{red}\left \{ 3 \right \} \end{aligned} \end{array}$.


Catatan:

Penjelasan untuk soal no.1 b ada berkaitan dengan penentuan akar $\color{red}\displaystyle \frac{3\pm \sqrt{5}}{2}$ , silahlkan Anda klik di sini

Berikut soal yang berbasis seolah-olah berbeda, tetapi setelah Anda cermati, maka Anda akan dengan mudah menentukan penyelesaiannya.

$\begin{array}{ll} 2.&\textrm{Tentukan himpunan penyelesaian dari}\\ &\, ^{0,25}\log (x-4)+\, ^{16}\log (x+2)=0\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{Dik}&\textrm{etahui}\\ &^{0,25}\log (x-4)+\, ^{16}\log (x+2)=0\\ &\Leftrightarrow ^{.^{\frac{1}{4}}}\log (x-4)+\, ^{16}\log (x+2)=0\\ &\Leftrightarrow ^{.^{4^{-1}}}\log (x-4)+\, ^{.^{4^{2}}}\log (x+2)=0\\ &\Leftrightarrow \, -\, ^{4}\log (x-4)+\displaystyle \frac{1}{2}\: . ^{4}\log (x+2)=0\\ &\Leftrightarrow \, \displaystyle \frac{1}{2}\: . ^{4}\log (x+2)=\, ^{4}\log (x-4)\\ &\Leftrightarrow \, ^{4}\log (x+2)=2.\, ^{4}\log (x-4)\\ &\Leftrightarrow \, ^{4}\log (x+2)=\, ^{4}\log (x-4)^{2}\\ &\Leftrightarrow \, ^{4}\log (x+2)=\, ^{4}\log (x^{2}-8x+16)\\ (\ast )\: \: &\color{blue}\textrm{Syarat numerus}\\ &\begin{array}{l|l} \begin{aligned}&f(x)>0\\ \Leftrightarrow \: \: &x-4>0\\ \Leftrightarrow \: \: &x>4 \end{aligned}&\begin{aligned}&g(x)>0\\ \Leftrightarrow \: \: &x+2>0\\ \Leftrightarrow \: \: &x>-2 \end{aligned} \end{array}\\ &\textrm{Sehingga syarat numerusnya},\: \: \color{red}x>4\\ (\ast )\: \: &\color{blue}\textrm{Syarat kedua},\: \: \color{black}f(x)=g(x)\\ &\Leftrightarrow \quad x^{2}-8x+16=x+2\\ &\Leftrightarrow \quad x^{2}-8x-x+16-2=0\\ &\Leftrightarrow \quad x^{2}-9x+14=0\\ &\Leftrightarrow \quad (x-2)(x-7)=0\\ &\Leftrightarrow \quad x=2\: \: \textrm{atau}\: \: x=7\\ &\textrm{Karena}\: \: x>4,\: \: \textrm{yang memenuhi}\: \: x=7\\ (\ast )\: \: &\textrm{Jadi},\: \: \textrm{HP}=\color{red}\left \{ 7 \right \} \end{aligned} \end{array}$.

$\LARGE\colorbox{aqua}{LATIHAN SOAL}$.

$\begin{array}{ll}\\ 3.&\textrm{Tentukan himpunan penyelesaian dari}\\ &\textrm{a}.\quad ^{2}\log x+\, ^{2}\log (x-1)=\, ^{2}\log (x+3)\\ &\textrm{b}.\quad \log x+\log 2=\log (x+2)\\ &\textrm{c}.\quad \log (x^{2}-4x-5)=\log (x-5)\\ &\textrm{d}.\quad \log (x^{2}-2x-8)=\log (3x-4)\\\\ \end{array}$.


DAFTAR PUSTAKA

  1. Sembiring,S., Zulkifli, M., Marsito, Rusdi, I. 2016. Matematika untuk Siswa SMA/MA Kelas X Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Bandung: Srikandi Empat Widya Utama.
  2. Kurnia, N., dkk. 2016. Jelajah Matematika SMA Kelas X Peminatan MIPA. Jakarta: YUDHISTIRA.


Tidak ada komentar:

Posting Komentar

Informasi