Contoh Soal 5 Transformasi Geometri

$\begin{array}{ll}\\ 21.&\textrm{Jika setiap titik pada grafik dengan}\\ &\textrm{dengan persamaan}\: \: y=\sqrt{x}\: \: \textrm{dicerminkan} \\ &\textrm{terhadap garis}\: \: y=x\: ,\: \textrm{maka persamaan}\\ &\textrm{grafik yang dihasilkan adalah}\, ...\\ &\begin{array}{lll}\\ \textrm{a}.\quad \color{red}y=x^{2}\: ,\: x\geq 0&&\\ \textrm{b}.\quad y=-\sqrt{x}\: ,\: x\geq 0&\\ \textrm{c}.\quad y=-x^{2}\: ,\: x\leq 0&\\ \textrm{d}.\quad y=\sqrt{-x}\: ,\: x\leq 0\\ \textrm{e}.\quad y=-\sqrt{-x}\: ,\: x\leq 0 \end{array}\\\\ &\quad\quad\qquad \textbf{UMB Tahun 2011 Kode 152}\\\\\\ &\textbf{Jawab}:\quad \textbf{a}\\ &\begin{aligned}\textrm{Dike}&\textrm{tahui bahwa}:\\ y&=\sqrt{x},\: \: \textrm{atau}\: \: y^{2}=x\\ \textbf{Alt}&\textbf{ernatif 1}\\ \textrm{mak}&\textrm{a}\: \: \textrm{saat dicerminkan terhadap}\\ \textrm{gari}&\textrm{s}\: \: y=x,\: \textrm{adalah}\: \: \color{red}x^{2}=y\\ \textrm{atau}&\: \: \color{red}y=x^{2}.\\ \textbf{Alt}&\textbf{ernatif 2}\\ \textrm{Jika}\: &\textrm{ingin dikerjakan dengan rumus}\\ \begin{pmatrix} x'\\ y' \end{pmatrix}&=M_{x=y}\begin{pmatrix} x\\ y \end{pmatrix}\\ &=\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}\\ &=\begin{pmatrix} y\\ x \end{pmatrix}\\ \textrm{Sela}&\textrm{njutnya hasilnya disubstitusikan}\\ \textrm{ke p}&\textrm{ersamaan}\: \: y=\sqrt{x}\Rightarrow \color{red}x'=\sqrt{y'}\\ \sqrt{y'} &=x'\: \: \: \textrm{maka}\\ y'&=\left ( x' \right )^{2}\: \: \: \textrm{selanjutnya}\\ y&=x^{2} \end{aligned} \end{array}$.
Sebelum dicerminkan terhadap garis y=x
Gambar kurva/grafik setelah cerminkan terhadap garis y=x

$\begin{array}{ll}\\ 22.&\textrm{Transformasi}\: \: T\: \: \textrm{adalah pencerminan}\\ &\textrm{terhadap garis}\: \: y=\displaystyle \frac{x}{3}\: \: \textrm{dilanjutkan oleh} \\ &\textrm{pencerminan terhadap garis}\: \: y=-3x.\\ &\textrm{Matriks yang bersesuian dengan}\\ &\textrm{transformasi}\: \: T\: \: \textrm{adalah}\, ...\\ &\begin{array}{lll}\\ \textrm{a}.\quad \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}&&\\ \textrm{b}.\quad \color{red}\begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}&\\ \textrm{c}.\quad \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}&\\ \textrm{d}.\quad \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}\\ \textrm{e}.\quad \begin{pmatrix} 0 & -1\\ -1 & 0 \end{pmatrix} \end{array}\\\\ &\quad\quad \textbf{SBMPTN Tahun 2013 Kode 433}\\\\\\ &\textbf{Jawab}:\quad \textbf{b}\\ &\begin{aligned}\textrm{Dike}&\textrm{tahui bahwa}:\\ \textrm{sebu}&\textrm{ah persamaan garis lurus}\\ \textrm{dapa}&\textrm{t dituliskan dengan}:\: y=\color{red}m\color{black}x\\ \textrm{Dike}&\textrm{tahui pula bahwa ada 2 garis}:\\ y_{1}&=\displaystyle \frac{1}{3}x\quad \textrm{dan}\: \: \: y_{2}=-3x\\ \textrm{seba}&\textrm{gai representasi transformasi}\: \: T.\\ \textrm{Kare}&\textrm{na}\: \: m_{1}\times m_{2}=\left ( \displaystyle \frac{1}{3} \right )(-3)=-1\\ \textrm{bera}&\textrm{rti 2 garis di atas saling tegak}\\ \textrm{luru}&\textrm{s dan hal ini seperti rotasi 2}\\ \textrm{kali}\: \: &90^{\circ}\: \: \textrm{atau}\: \: 180^{\circ}\\ \textrm{Jadi},&\: T=\color{purple}\begin{pmatrix} \cos 180^{\circ} & -\sin 180^{\circ}\\ \sin 180^{\circ} & \cos 180^{\circ} \end{pmatrix}\\ \Leftrightarrow &\: T=\color{red}\begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix} \end{aligned} \end{array}$.


DAFTAR PUSTAKA

  1. Johanes, Kastolan, Sulasim, 2006. Kompetensi Matematika 3A SMA Kelas XII Program IPA Semester Pertama. Jakarta: YUDHISTIRA.
  2. Nugroho, P. A. Gunarto, D. 2013. Big Bank Soal-Bahas MAtematika SMA/MA. Jakarta: WAHYUMEDIA.
  3. Sharma,S.N., dkk. 2017. Jelajah Matematika SMA Kelas XI Program Wajib. Jakarta: YUDHISTIRA.




Tidak ada komentar:

Posting Komentar

Informasi