Definit Positif dan Definit Negatif pada Fungsi Kuadrat

Materi Tambahan Persamaan Logaritma 4 d sini  dan  Pembahasan Soal 4 di sini

dan untuk memahami materi ini Anda harus sudah memahami materi persamaan kuadrat

A. Definit Positif

Perhatikan ilustrasi gambar grafik parabola (fungsi kuadrat) berikut












Pada gambar kurva parabola berkaitan dengan posisinya terhadap sumbu X di atas diberikan 3 model, yaitu:

model pertama  $f(x)=x^{2}-1$ di mana kurva memotong sumbu X di dua titik berbeda yaitu di titik (0,-1) dan (0,1). Sedangkan model kurva kedua dengan  $f(x)=(x-2)^{2}$ dengan kurva bukan memeotong, tetapi hanya menyinggung sumbu X saja di titik singgungnya (0,2). Sedangkan model gambar yang ketiga adalah kurva  $f(x)=x^{2}-4x+5$, di mana kurva sama sekali tidak memotong maupun tidak menyinggung sumbu X., hal inilah yang dinamakan definit positif.

Selanjutnya dapat dijelaskan bahwa suatu kurva parabola dengan   $f(x)=ax^{2}+bx+c$  dengan   $a>0$ das   $b^{2}-4ac<0$, maka dapat dipastikan seluruh grafiknya akan berada di atas sumbu X.

B. Hungunagn dengan Diskriminan pada Grafik Fungsi Kuadrat

Rumus penyelesaian persamaan kuadrat  $ax^{2}+bx+c=0,\: \: a\neq 0$. adalah: 
$x_{1,2}=\displaystyle \frac{-b\pm \sqrt{D}}{2a}$.
dengan  $D=b^{2}-4ac$  adalah diskriminan dari persamaan kuadrat. Selanjutnya nilai D akan sangat menentukan akar-akar penyelesaian dari persamaan tersebut di atas.

Selain telah disebutkan sebelumnya terkait diskriminan, diskriminan juga akan sangat mempengaruhi  kondisi kurva parabola (fungsi kuadrat) berkaitan dengan memotong, menyinggung, ataupun tidak memotong maupun tidak menyinggung terhadap sumbu X, yaitu:
  • Jika  $D>0$, maka kurva akan memotong sumbu X di dua titik yang berbeda
  • Jika  $D=0$, maka kurva akan menyinggung sumbu X di satu titik saja
  • Jika  $D<0$, maka parabola tidak akan pernah memotong maupun menyinggung sumbu X.

C. Definit Negatif

Berlawanan dengan penjelasan pada bagian A, definit negatif adalah kurva parabola seluruhnya berada di  bawah sumbu X, dengan  $f(x)=ax^{2}+bx+c$  dengan   $a<0$ das   $b^{2}-4ac<0$, maka dapat dipastikan seluruh grafiknya akan berada di bawah sumbu X.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.







































$\LARGE\colorbox{aqua}{LATIHAN SOAL}$.

$\begin{array}{ll} 1.&\textrm{Tentukanlah nilai}\: \: k\: \: \textrm{agar grafik dari fungsiu kuadrat}\\ &y=kx^{2}-2kx+k+1\: \: \textrm{menyinggung sumbu X}\\ 2.&\textrm{Tentukan nilai}\: \: p\: \: \textrm{agar garfik fungsi kuadrat dengan}\\ &\textrm{persamaan kurva}\: \: y=x^{2}+2x+p\: \: \textrm{selalu memotong}\\ &\textrm{sumbu X di dua titik}\\ 3.&\textrm{Tentukan harga} \: \: k\: \: \textrm{agar fungsi}\: \: f(x)=x^{2}-kx+1\\ &\textrm{definit positif} \end{array}$.

DAFTAR PUSTAKA

  1. Kurnianingsih, S., Kuntarti, Sulistiyono. 2007. Matematika SMA dan MA untuk Kelas X Semester 1 KTSP Standar Isi 2006. Jakarta: ESIS.

SUMBER INTERNET
  1. Ahmad Thohir, Contoh Soal Persiapan Semester Gasal. https://ahmadthohir1089.wordpress.com/2017/11/27/insyaallah-76/  pada tanggal 8 November 2021 pukul 5.28 WIB.

Tidak ada komentar:

Posting Komentar

Informasi