Latihan Soal 8 Persiapan PAS Gasal Matematika Peminatan Kelas XII (Limit dan Turunan Fungsi Trigonometri)

 71.Sebuah mesin diprogram untuk dapatbegerak tiap waktu mengikuti posisix=2cos3tdany=2cos2tdi manax,ydalamcm,dantdalam detikJika kecepatakan dirumuskan denganv=(vx)2+(vy)2,maka nilaivsaatt=30detikadalah...cm/detika.43b.211c.210d.6e.42Jawab:aDiketahui Kecepatan gerak mesin{x=2cos3xdxdt=6sin3ty=2cos2xdydt=4sin2tMaka kecepatan mesin saatt=30v=(vx)2+(vy)2v=(6sin3t)2+(4sin2t)2=(6sin3(30))2+(4sin2(30))2=(6(1))2+(4(123))2=36+12=48=16.3=43

72.Sebuah benda duhubungkan denganpegas dan bergerak sepanjang sumbuX dengan formula persamaan:x=sin2t+3cos2tJarak terjauh dari titikOyang dapatdicapai oleh benda tersebut adalah....a.1b.2c.3d.4e.5Jawab:bDiketahui gerak benda yang bergerakmengikuti formula:x=sin2t+3cos2tJarak terjauh dicapai saatx=dxdt=0x=2cos2t23sin2t=02cos2t=23sin2tsin2tcos2t=133tan2t=tan302t=30+k.180t=15+k.90{k=0,t=15k=1,t=105k=2,t=195k=3,t=285k=4,t=375dstAmbilt=15,maka nilaixnya adalah:x=sin2t+3cos2tx=sin2(15)+3cos2(15)x=12+3(123)x=12+32=2

73.Pada kurvay=sinxdibuatgaris singgung melalui titik(2π3,k)garis singgung tersebut memotongsumbu-X di A dan sumbu-Y di B.LuasAOBadalah....a.(3π+23)236b.(3π+33)236c.(3π+23)216d.(3π+23)218e.(3π+33)218Jawab:bPerhatikan ilustrasi berikut


.Misalkan koordinat titikP(2π3,k)maka,xp=2π3,yp=k=sin2π3=123Persamaan garis singgung di titik P:y=mxp(xxp)+yp{(2π3,k)=(2π3,123)mxp=dydx=y=cosxmxp=cos(2π3)=12Sehingga persamaan garis singgungnyay=(12)(x2π3)+1232y=x+2π3+123memotong sumbu-X, makayA=02yA=xA+2π3+30=xA+2π3+3xA=2π3+3memotong sumbu-Y, makaxB=02yB=xB+2π3+32yB=0+2π3+3yB=π3+123LuasAOB=[AOB]=xA.yB2=(2π3+3).(π3+123)2=16(2π+33).16(2π+33)=136(2π+33)2

74.Sebuah wadah penampung air hujanmemiliki ukuran sisi samping 3 m dansisi horisontal juga 3 m. Sisi sampingmembentuk sudutθ(0θπ2)dengan garis vertikal (lihat gambar)Nilaiθsupaya wadah dapat menampungair hujan maksimum adalah....
.a.π3b.π4c.π5d.π6e.π8Jawab:aSupaya memuat dapat maksimummaka luas penampang haruslahMAKSIMUM, yaitu
gambar 1
gambar 2
.Luas penampang=Luas Trapesiumdengan{t=3sinθn=3cosθLuas Penampang=12(sisi sejajar)×tL=12(6+2n)×tL=(3+n)×tL=(3+3cosθ)×3sinθL=9sinθ+9sinθcosθL=9sinθ+92sin2θSuapa luas penampangMAKSIMUMmakaL=dLdθ=0L=9cosθ+9cos2θ=09cosθ+9cos2θ=09cosθ+9(2cos2θ1)=02cos2θ+cosθ1=0(cosθ+1)(2cosθ1)=0cosθ=1atau2cosθ=1cosθ=1ataucosθ=12cosθ=cosπataucosθ=cosπ3θ=πatauθ=π3

75.Seseorang melempar bola dari atapsebuah rumah. Ketinggian bola saatt(detik)dinyatakan dengan persamaanh(t)=5+cos2πt.Kecepatan boladitentukan dengan formulav=dhdtBesar kecepatan bola saatt=0,25detik adalah....a.0b.πc.2πd.3πe.4πJawab:bDiketahuih(t)=5+cos2πt.makav=dhdt=2cosπt(sinπt).(π)v=πsin2πtSaatt=0,25=14,makabesar kecepatannya adalah:v=πsin2π(14)=πsinπ2=πTanda negatif menunjukkanarah kecepatan ke bawahKarena kecepatan merupakan salahsatu besaranVEKTOR.

76.Turunan kedua darif(x)=x3sin3xadalah... .a.6x2+9sin3xb.3x2+6sin3xc.3x9sin3xd.6x+9sin3xe.9x6sin3xJawab:df(x)=x3sin3xf(x)=3x23cos3xf(x)=6x+9sin3x

77.Diketahui fungsig(x)=1cosxsinx.Nilaiturunan kedua saatx=π4adalah....a.2+4b.223c.22+3d.324e.32+4Jawab:dg(x)=1cosxsinxg(x)=sinx(sinx)cosx(1cosx)sin2x=sin2xcosx+cos2xsin2x=1cosxsin2xg(x)=sinx(sin2x)2sinxcosx(1cosx)sin4x=sinx(sin2x)sin2x(1cosx)sin4x=sinπ4(sin2π4)sin2π4(1cosπ4)sin4π4=(12)(12)21.(1(12))(12)4=12121+1214×44=224+421=624=324

78.Turunan kedua fungsif(x)=sin2xcos2xadalahf(x)=....a.6sin2xb.4cos2xc.2cos2xd.2cos2xe.4cos2xJawab:bf(x)=sin2xcos2xf(x)=2sinxcosx2cosx(sinx)=2sinxcosx+2sinxcosx=2(2sinxcosx)=2sin2xf(x)=2.2cos2x=4cos2x

79.Diketahuif(x)=sinx.Jikaf(x)adalah turunan keduafungsif,makanilai darif(π2)adalah....a.12b.14c.0d.14e.12Jawab:af(x)=sinx=sin12xf(x)=12sin12x.cosx=cosx2sin12xf(x)=sinx(2sin12x)cosx(2.12sin12x.cosx)4sinx=2sinxsinxcos2xsinx4sinxf(π2)=2sinπ2.sinπ2cos2π2sinπ24sinπ2=2.1.104.1=12

80.Jikaf(x)=tan2(3x2)makaf(x)=....a.36tan2(3x2)sec2(3x2)18sec4(3x2)b.36tan2(3x2)sec2(3x2)+18sec2(3x2)c.36tan2(3x2)sec2(3x2)+18sec4(3x2)d.18tan2(3x2)sec2(3x2)+36sec4(3x2)e.18tan2(3x2)sec2(3x2)+18sec4(3x2)Jawab:cf(x)=tan2(3x2)f(x)=2tan(3x2)sec2(3x2)(3)=6tan(3x2)sec2(3x2)f(x)=6sec2(3x2).(3)sec2(3x2)+6tan(3x2).2sec(3x2).sec(3x2)tan(3x2)(3)=18sec4(3x2)+36tan2(3x2)sec2(3x2).









Tidak ada komentar:

Posting Komentar

Informasi