Latihan Soal 7 Persiapan PAS Gasal Matematika Peminatan Kelas XII (Limit dan Turunan Fungsi Trigonometri)

 61.Fungsif(x)=sinxcosxdengan0<x<2πnaik pada interval....a.0<x<π4b.π4<x<2πc.3π4<x<7π4d.0<x<3π4atau7π4<x<2πe.0<x<π4atau3π4<x<2πJawab:dDiketahuif(x)=sinxcosxFungsifnaik, jikaf(x)>0Selanjutnyaf(x)=cosx+cosx=0sinx=cosxsinxcosx=1tanx=1tanx=tan3π4x=3π4±k.π k=0x=3π4k=1x=3π4±π=7π4k=2x=3π4±2π=tm++++03π47π42πambil titik ujix=12πuntukx=12πf(12π)=cos12π+sin12π=0+1=1(positif)untukx=32πf(32π)=cos32π+sin32π=01=1(negatif)untukx=116πf(116π)=cos116π+sin116π=12312(positif)

62.Fungsif(x)=sin2xdengan0<x<2πnaik pada interval....a.π2<x<πatau3π2<x<2πb.2π3<x<πc.0<x<π2atauπ<x<3π2d.4π3<x<2πe.π3<x<πatau4π3<x<2πJawab:cDiketahuif(x)=sin2xFungsifnaik, jikaf(x)>0Selanjutnyaf(x)=2sinxcosx=sin2x=0sin2x=0sin2x=sin02x=±k.2πatau2x=π±k.2πx=±k.πataux=π2±k.πk=0x=0ataux=π2k=1x=πataux=π2+π=3π2k=2x=2πataux=π2+2π=52π(tm)++++0π2π3π22πambil titik ujix=16πuntukx=16πf(16π)=sin2(16π)=sin13π=12(positif)untukx=34πf(34π)=sin2(34π)=1(negatif)

63.Fungsif(x)=cos22xuntuk0<x<360turun pada interval....a.45<x<90b.135<x<180c.225<x<270d.270<x<300e.315<x<360Jawab:df(x)=cos22xFungsifturun, jikaf(x)<0f(x)=2cos2x(sin2x)(2)=2sin4xSelanjutnya2sin4x=0sin4x=0sin4x=sin0{4x=0+k.360x=k.904x=180+k.360x=45+k.90k=0x=0ataux=45k=1x=90ataux=135k=2x=180ataux=225k=3x=270ataux=315k=4x=360ataux=405(tm)Gunakan titik uji padax=30untukf(30)=2sin4(30)=3(negatif)Gunakan titik uji padax=60untukf(60)=2sin4(60)=3(positif)Gunakan titik uji padax=120untukf(120)=2sin4(120)=3(negatif)Gunakan titik uji padax=150untukf(150)=2sin4(150)=3(positif)dan seterusnya...++++04590135180++++180225270315360

64.(SBMPTN 2015)Fungsif(x)=2sin2x+x32pada0<x<πturun pada interval....a.5π12<x<11π12b.π12<x<5π12c.2π3<x<5π6d.3π4<x<πe.3π4<x<3π2Jawab:cDiketahuif(x)=2sin2x+x32Fungsifturun, jikaf(x)<0f(x)=sin2x+123sin2x+x32=0sin2x+123=0sin2x=123sin2x=sin4π32x=4π3+k.2πatau2x=π4π3+k.2πx=2π3+k.πataux=π6+k.πk=0x=2π3ataux=π6(tm)k=1x=5π3ataux=5π6Gunakan titik uji padax=π2=90untukf(π2)=sin2(π2)+123sin2(π2)+(π2)32=+(positif)Gunakan titik uji padax=3π4=135untukf(3π4)=sin2(3π4)+123sin2(3π4)+(3π4)32=(negatif)++02π35π6

65.Fungsif(x)=sin2x+x2denganx>0turun pada interval....a.5π12<x13π12b.7π12<x<11π12c.π12<x<5π12d.7π6<x13π6e.7π6<x11π6Jawab:bDiketahuif(x)=sin2x+x2Fungsifturun, jikaf(x)<0f(x)=sin2x+122sin2x+x2=0sin2x+12=0sin2x=12sin2x=sin7π62x=7π6+k.2πatau2x=π7π6+k.2πx=7π12+k.πataux=π12+k.πk=0x=7π12ataux=π12(tm)k=1x=19π12ataux=11π12Gunakan titik uji padax=π2=90untukf(π2)=sin2(π2)+12sin2(π2)+(π2)2=+(positif)Gunakan titik uji padax=3π4=135untukf(3π4)=sin2(3π4)+12sin2(3π4)+(3π4)2=(negatif)++07π1211π12.

66.Titik stasioner fungsif(x)=cos3xpada0xπadalah....a.(0,1),(π4,1),(π3,1),dan(π2,1)b.(0,1),(π3,1),(π2,1),dan(π,1)c.(π6,1),(π3,1),(π2,1),dan(2π3,1)d.(π6,1),(π3,1),(π2,1),dan(2π3,1)e.(0,1),(π3,1),(2π3,1),dan(π,1)Jawab:eDiketahuif(x)=cos3xf(x)=3sin3xStasioner fungsifsaatf(x)=0maka,sin3x=0sin3x=0sin3x=sin03x=0+k.2πatau3x=π+k.2πx=k.2π3ataux=π3+k.2π3k=0x=0ataux=π3k=1x=2π3ataux=πSekarang kita tentukan nilai dan titiknyax=0f(0)=cos3(0)=1(0,1)x=π3f(π3)=cos3(π3)=cosπ=1(π3,1)dan seterusnya

67.Titik stasioner fungsif(x)=sin(2xπ6)pada0xπadalah....a.(0,1)dan(π6,1)b.(π6,1)dan(π3,1)c.(π4,1)dan(π2,1)d.(π3,1)dan(5π6,1)e.(π2,1)dan(π,1)Jawab:dDiketahuif(x)=sin(2xπ6)f(x)=2cos(2xπ6)Stasioner fungsifsaatf(x)=0maka,2cos(2xπ6)=0cos(2xπ6)=0cos(2xπ6)=cosπ2(2xπ6)=±π2+k.2πx=π12±π4+k.π{x=π3+k.πx=π6+k.πk=0{x=π3x=π6(tm)k=1{x=4π3tmx=5π6Sekarang kita tentukan nilai dan titiknyax=π3f(π3)=sin(2.π3π6)=sinπ2=1=1(π3,1)x=5π6f(5π6)=sin(2.5π6π6)=sin3π2=1(5π6,1)

68.Nilaixpada titik stasionerfungsif(x)=x+sinxuntuk0x360adalah....a.90b.135c.150d.180e.360Jawab:dDiketahuif(x)=x+sinxf(x)=1+cosxStasioner fungsifsaatf(x)=0maka,1+cos=0cosx=1cosx=cos180x=±180+k.360k=0x={180mungkin180tidak mungkink=1x={540tidak mungkin180mungkin

69.Nilaiypada titik stasionerfungsif(x)=4cosx+cos2xuntuk0x360adalah....a.5dan3b.4dan2c.3dan5d.2dan4e.3dan5Jawab:cDiketahuif(x)=4cosx+cos2xf(x)=4sinx2sin2xStasioner fungsifsaatf(x)=0maka,4sinx2sin2x=04sinx4sinxcosx=04sinx(1+cosx)=0sinx(1+cosx)=0sinx=0atau1+cosx=0sinx=0ataucosx=1sinx=sin0ataucosx=cos180x={0+k.360180+k.360ataux={180+k.360180+k.360k=0x=0atau180Nilaiynyax=0f(0)=4cos0+cos2(0)=4+1=5x=180f(180)=4cos180+cos2(180)=4+1=3

70.Nilai stasioner fungsif(x)=sinx2cosxuntuk0x2πadalah....a.(π2,12)dan(π2,12)b.(π3,123)dan(π3,123)c.(π3,133)dan(2π3,133)d.(π3,133)dan(5π3,133)e.(π4,143)dan(3π4,143)Jawab:dDiketahuif(x)=sinx2cosxf(x)=2cosx1(2cosx)2Stasioner fungsifsaatf(x)=0maka,2cosx1(2cosx)2=02cosx1=0cosx=12cosx=cosπ3x=±π3+k.2πk=0x=±π3x={π3memenuhiπ3tidak memenuhik=1x=±π3+2πx={7π3tidak memenuhi5π3memenuhiTitiknya adalahx=π3f(π3)=sinπ32cosπ3=123212=133(π3,133)x=5π3f(5π3)=sin5π32cos5π3=123212=133(5π3,133).

Tidak ada komentar:

Posting Komentar

Informasi