$\begin{array}{ll}\\ 52.&\textrm{Nilai dari}\: \: ^{2}\log \displaystyle \frac{1}{32}\: \: \textrm{adalah}\: ...\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle -7\\ \color{red}\textrm{b}.&\displaystyle -5\\ \textrm{c}.& \displaystyle -3\\ \textrm{d}.& \displaystyle -2\\ \textrm{e}.& 5 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{b}\\ &\begin{aligned}&=\: ^{2}\log \displaystyle \frac{1}{32}\\ &=\: ^{2^{1}}\log 2^{-5}\\ &=\displaystyle \frac{-5}{1}\times \: ^{2}\log 2\\ &=\color{red}-5\\ &\\ & \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 53.&\textrm{Nilai dari}\: \: ^{0,333...}\log 0,111....\: \: \textrm{adalah}\: ...\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle \frac{1}{3}\\ \textrm{b}.&\displaystyle \frac{1}{2}\\ \color{red}\textrm{c}.& 2\\ \textrm{d}.& 3\\ \textrm{e}.& 6 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{c}\\ &\begin{aligned}&=\: ^{0,333...}\log 0,111...\\ &=\: ^{\frac{1}{3}}\log \frac{1}{9}\\ &=\: ^{\frac{1}{3}}\log \left (\frac{1}{3} \right )^{2}\\ &=\color{red}2 \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 54.&\textrm{Nilai dari}\: \: ^{5}\log 25\sqrt{5}\: \: \textrm{adalah}\: ...\\ &\begin{array}{llll}\\ \color{red}\textrm{a}.&\displaystyle \frac{5}{2}\\ \textrm{b}.&\displaystyle \frac{3}{2}\\ \textrm{c}.& \displaystyle \frac{1}{2}\\ \textrm{d}.& \displaystyle 2\\ \textrm{e}.& 3 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{a}\\ &\begin{aligned}&=\: ^{5}\log 25\sqrt{5}\\ &=\: ^{5^{1}}\log 5^{2}.5^{\frac{1}{2}}\\ &=\: ^{5^{1}}\log 5^{\frac{5}{2}}\\ &=\displaystyle \frac{\frac{5}{2}}{1}\times \: ^{5}\log 5\\ &=\color{red}\displaystyle \frac{5}{2} \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 55.&\textrm{Nilai dari}\: \: ^{\sqrt{3}}\log 81\: \: \textrm{adalah}\: ...\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle 12\\ \textrm{b}.&\displaystyle 10\\ \textrm{c}.& \displaystyle 9\\ \color{red}\textrm{d}.& \displaystyle 8\\ \textrm{e}.& 6 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{d}\\ &\begin{aligned}&=\: ^{\sqrt{3}}\log 81\\ &=\: ^{\displaystyle 3^{\frac{1}{2}}}\log 3^{4}\\ &=\displaystyle \frac{4}{\frac{1}{2}}\times \: ^{3}\log 3\\ &=\color{red}8 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 56.&\textrm{Nilai dari}\: \: ^{\frac{1}{3}}\log \displaystyle \frac{1}{243}\: \: \textrm{adalah}\: ...\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle 6\\ \color{red}\textrm{b}.&\displaystyle 5\\ \textrm{c}.& \displaystyle 4\\ \textrm{d}.& \displaystyle 3\\ \textrm{e}.& \displaystyle 2 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{b}\\ &\begin{aligned}&=\: ^{\frac{1}{3}}\log \displaystyle \frac{1}{243}\\ &=\: ^{\left (\frac{1}{3} \right )^{1}}\log \displaystyle \left (\frac{1}{3} \right )^{5}\\ &=\displaystyle \frac{5}{1}\times \: ^{\frac{1}{3}}\log \frac{1}{3}\\ &=\color{red}5 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 57.&\textrm{Nilai dari}\: \: ^{\sqrt{2}}\log 16\: \: \textrm{adalah}\: ...\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle 10\\ \textrm{b}.&\displaystyle 9\\ \color{red}\textrm{c}.& \displaystyle 8\\ \textrm{d}.& \displaystyle 6\\ \textrm{e}.& \displaystyle 4 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{c}\\ &\begin{aligned}&=\: ^{\sqrt{2}}\log 16\\ &=\: ^{\displaystyle 2^{\frac{1}{2}}}\log 2^{4}\\ &=\displaystyle \frac{4}{\frac{1}{2}}\times \: ^{2}\log 2\\ &=\color{red}8\end{aligned} \end{array}$
$\begin{array}{ll}\\ 58.&\textrm{Nilai dari}\: \: ^{\sqrt{5}}\log \sqrt{125}\: \: \textrm{adalah}\: ...\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle -3\\ \textrm{b}.&\displaystyle -2\\ \textrm{c}.& \displaystyle 2\\ \color{red}\textrm{d}.& \displaystyle 3\\ \textrm{e}.& \displaystyle 5 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{d}\\ &\begin{aligned}&=\: ^{\sqrt{5}}\log \sqrt{125}\\ &=\: ^{\sqrt{5}^{1}}\log \left ( \sqrt{5} \right )^{3}\\ &=\displaystyle \frac{3}{1}\times \: ^{\sqrt{5}}\log \sqrt{5}\\ &=\color{red}3\\ \end{aligned} \end{array}$
$\begin{array}{ll}\\ 59.&\textrm{Nilai dari}\: \: ^{\sqrt{\sqrt{2}}}\log \sqrt{8\sqrt{8}}\: \: \textrm{adalah}\: ...\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle 4\\ \textrm{b}.&\displaystyle 6\\ \textrm{c}.& \displaystyle 8\\ \color{red}\textrm{d}.& \displaystyle 9\\ \textrm{e}.& \displaystyle 12 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{d}\\ &\begin{aligned}&=\: ^{\sqrt{\sqrt{2}}}\log \sqrt{8\sqrt{8}}\\ &=\: ^{\sqrt[4]{2}}\log \left ( 8\left ( 8 \right )^{\frac{1}{2}} \right )^{\frac{1}{2}}\\ &=\: ^{2^{\frac{1}{4}}}\log 8^{\left (\frac{1}{2}+\frac{1}{4} \right )}\\ &=\: ^{2^{\frac{1}{4}}}\log 2^{3\left ( \frac{3}{4} \right )}\\ &=\displaystyle \frac{\frac{9}{4}}{\frac{1}{4}}\times \: ^{2}\log 2\\ &=\color{red}9 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 60.&\textrm{Nilai dari}\\ & ^{6}\log 8 +\: ^{6}\log \displaystyle \frac{9}{2}\: \: \textrm{adalah}\: ...\\ &\begin{array}{llll}\\ \textrm{a}.&\displaystyle 4\\ \textrm{b}.&\displaystyle 3\\ \textrm{c}.&3 \displaystyle \frac{1}{2}\\ \textrm{d}.& 2\displaystyle \frac{1}{2}\\ \color{red}\textrm{e}.& \displaystyle 2 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{e}\\ &\begin{aligned}&=\: ^{6}\log 8 +\: ^{6}\log \displaystyle \frac{9}{2}\\ &=\: ^{6}\log 8\times \frac{9}{2}\\ &=\: ^{6}\log 36\\ &=\: ^{6}\log 6^{2}\\ &=\color{red}2\\ &\\ &\\ & \end{aligned} \end{array}$
Tidak ada komentar:
Posting Komentar
Informasi