Aplikasi Fungsi Logaritma

Dalam banyak hal konsep logaritma sering digunakan untuk memudahkan perhitungan, baik kejadian di sekitar kita sehari hari atau lainnya yang dilakukan seseorang yang menekuni bidang tertentu. Sebagai misal dalam bidang ekonomi saat perhitungan bunga majmuk, selain itu juga dalam bidang baik fisika, kimia, biologi, geografi dan lain-lain.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

Dalam bidang ekonomi

Jika modal M dibungakan untuk setiap periode bungan dengan bunga majmuk  i = p % , maka besar modal M setelah n periode adalah $M_{n}$ dengan mengikuti rumus:

$M_{n}=M(1+i)^{n}$.





















Dalam Bidang Fisika

Misalnya dalam menentukan tingkat kebisingan (Taraf Intensitas) bunyi yang merupakan laju perpindahan energi bunyi persatuan luas yang tegak lurus terhadap arah merambatnya diformulasikan dengan

$TI=10\log \left ( \displaystyle \frac{I}{I_{o}} \right )$.

Satuan dalam penghitungan dia atas adalah seibel (dB).

Jika diketahui nilai ambang intensitas bunyi  $\left ( I_{o} \right )$ dalam hal ini adalah intensitas bunyi terendah yang masih bisa diterima oleh manusia, yaitu sekitar $10^{-12}\: \: watt/m^{2}$ pada frekuensi 1000 Hz pada suatu ketika diketahui pula taraf intensitas bunyi sebuah mesin adalah 60 dB, maka berapakah intensitas bunyi mesin tersebut, berikut uraiannya

$\begin{aligned}TI&=10 \log \left ( \displaystyle \frac{I}{I_{o}} \right )\\ 60&=10\log \left ( \displaystyle \frac{I}{10^{-12}} \right )\\ 6&=\log I-\log 10^{-12}\\ 6&=\log I-(-12)\\ 6&=\log I+12\\ \log I&=6-12\\ ^{10}\log I&=-6\\ I&=10^{-6} \end{aligned}$.

Jadi, intensitas bunyi mesin tersebut adalah  $10^{-6}\: \: watt/m^{2}$.

Dalam Bidang Kimia

Dalam menentukan tingkat keasamam suatu larutan adalah melihat nilai pH-nya. Nilai pH (power of Hydrogen) ini tergantung dengan tingkat konsentrasi dari ion hidrogen dalam larutan. Misal diketahui konsentrasi ion hidrogen $\left [ \textrm{H}^{+} \right ]$ dalam satuan M (molaritas) adalah $6,6\times 10^{-7}$. Jika formulasi pH adalah $\textrm{pH}=-\log \left [ \textrm{H}^{+} \right ]$, maka pH dari larutan tersebut adalah:

$\begin{aligned}\textrm{pH}&=-\log \left [ \textrm{H}^{+} \right ]\\ &=-\log \left ( 6,6\times 10^{-7} \right )\\ &=-\left ( \log 6,6-7 \right )\\ &=-\left ( 0,8195-7 \right )\\ &=6,1805\\ &\approx 6,2 \end{aligned}$.

Jadi, pH larutan tersebut adalah 6,2.

Masih dalam bidang kimia, dalam hal ini adalah proses peluruhan zat. Misalkan formulasi untuk menentukan jumlah zat pada saat $t$ adalah sebagai berikut:

$N_{t}=N_{0}e^{-rt}$.

dengan:

$\begin{aligned} N_{t}&=\textrm{jumlah setelah}\: \: t\\ N_{0}&=\textrm{jumlah zat semula}\\ e&=\color{blue}2,71828...\\ &\quad\textrm{bilangan pokok logaritma natural}\\ r&=\textrm{laju peluruhan}\\ t&=\textrm{waktu yang dibutuhkan} \end{aligned}$.

untuk materi tentang bilangan logaritma natural silahkan klik di sini.

$\begin{array}{ll} &\textrm{Terdapat sejumlah zat}\: \: N_{0}.\: \textrm{Dalam 3 tahun}\\ &\textrm{Jumlah zat kimia tersebut menjadi}\: \: \displaystyle \frac{1}{2}N_{0}\\ &\textrm{Tentukan waktu yang dibutuhkan agar}\\ &\textrm{jumlah zat menjadi}\: \: \displaystyle \frac{1}{4}N_{0}\: \: \textrm{nya}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui}\: \: N_{t}=N_{0}e^{-rt}\\ &\textrm{Karena}\: \: N_{t}=\displaystyle \frac{1}{2}N_{0},\: \: \textrm{maka}\\ &\displaystyle \frac{1}{2}N_{0}=N_{0}e^{-rt}\\ &\quad \displaystyle \frac{1}{2} \: =e^{-r(3)}\\ &\ln \displaystyle \frac{1}{2}=\ln e^{-3r}\\ &\ln \displaystyle \frac{1}{2}=-3r\ln e=-3r\\ &\quad r\: \, =-\displaystyle \frac{\ln \displaystyle \frac{1}{2}}{3}\\ &\quad r\: \, =0,23104906\\ &\textrm{Agar menjadi}\: \: \displaystyle \frac{1}{4}N_{0},\: \: \textrm{maka}\\ &\displaystyle \frac{1}{4}N_{0}=N_{0}e^{-rt}=N_{0}e^{-0,23104906t}\\ &\quad \displaystyle \frac{1}{4}=e^{-0,2310490t}\\ &\ln \displaystyle \frac{1}{4}=\ln e^{-0,2310490t}\\ &\ln \displaystyle \frac{1}{4}={-0,2310490t}.\ln e={-0,2310490t}\\ &\quad t\: \: =\displaystyle \frac{\ln \displaystyle \frac{1}{4}}{-0,23104906}\\ &\qquad =6,000000005 \end{aligned} \end{array}$.

Jadi, agar jumlah zat menjadi seperempatnyua dibutuhkan waktu lebih dari 6 tahun.

Catata:

Berikut link materi tentang konstanta e klik di sini dan di sini

Dalam Bidang Pembelajaran Matematika

Misalkan dalam pembelajaran matematika di tingkat SMA/MA ketika membahas mengenai perpangkatan suatu bilangan, jika sesorang diminta menentukan pangkat suatu bilangan yang menghasilkan bilangan bukan bilangan kuadrat pangkat. 

$\begin{array}{ll} 1.&\textrm{Seorang siswa Kelas X suatu MA diminta}\\ &\textrm{menentukan pangkat dari sebuah persoalan}\\ &\textrm{a}.\quad \textrm{2 dipangkatkan berapa akan sama dengan 8}\\ &\textrm{b}.\quad \textrm{2 dipangkatkan berapa akan sama dengan 7}\\\\ &\textrm{Jawab}:\\ &\textrm{Kedua pertanyyan di atas jika dimodel dalam}\\ &\textrm{model matematika menjadi}:\: \: 2^{x}=...\\ &\begin{aligned}\textrm{a}.\quad &\textrm{dengan cara tidak terlalu sulit seorang siswa}\\ &\textrm{akan segera menemukan jawabannya yaitu 3}\\ &\textrm{berikut prosesnya}\\ &\color{red}2^{x}=8\Leftrightarrow 2^{x}=2^{3}\Leftrightarrow x=3 \end{aligned}\\ &\begin{aligned}\textrm{b}.\quad&\textrm{Mungkin siswa yang belum pernah mendapatkan}\\ &\textrm{materi logaritma hanya akan mencoba-coba}\\ &\textrm{beberapa bilangan dengan cara menduga-duga}\\ &\textrm{saja. Tetapi bagi yang sudah paham konsep}\\ &\textrm{logaritma tidak akan menenukan banyak kendala}.\\ &\textrm{berikut menurut konsep logaritma}:\\ &2^{x}=7\\ &\textrm{masing-masing ruas di-logkan didepan angkanya}\\ &\Leftrightarrow \, \log 2^{x}=\log 7\\ &\Leftrightarrow \, x.\, \log 2=\log 7\\ &\Leftrightarrow \, x=\displaystyle \frac{\log 7}{\log 2}=\frac{0,8451}{0,301}\approx 2,81\\ &\textrm{Jadi, siswa akan dengan mudah dan terarah menjawab}\\ &\textrm{dengan jawaban}\: \: 2,81\: \: \textrm{dengan angak 2 desimal} \end{aligned} \end{array}$.


DAFTAR PUSTAKA

  1. Budhi, W. S. 2017. Matematika untuk SMA/MA Kelas X Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA.
  2. Sembiring,S., Zulkifli, M., Marsito, Rusdi, I. 2016. Matematika untuk Siswa SMA/MA Kelas X Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Bandung: Srikandi Empat Widya Utama.
  3. Yuana, R.A., Indriyastuti. 2017. Perspektif Matematika untuk Kelas X SMA dan MA Kelompok Peminatan Matematika dan Ilmu Alam. Solo: Tiga Serangkai Pustaka Mandiri.


Tidak ada komentar:

Posting Komentar

Informasi