Belajar matematika sejak dini
85.Perhatikan pernyataan berikut(1).2log7+2log2=2log14(2).2log12−2log4=2log8(3).2log12+2log16=3(4).2log12×2log16=3Pernyataan di atas yang benar adalaha.(1)dan(2)b.(1)dan(3)c.(2)dan(3)d.(2)dan(4)e.(3)dan(4)Jawab:bPerhatikan pernyataan (1)2log7+2log2=2log14benar karena,alogb+alogc=alogbcPerhatikan pernyataan (2)2log12−2log4=2log8adalah salah, seharusnya2log12−2log4=2log124=2log3ingat sifat berikutalogb−alogc=alogbcPerhatikan pernyataan (3)2log12+2log16=3Benar, karena sama dengan sifat no (1) di atasyaitu:2log12+2log16=2log12.16=2log8=2log23=3.
86.Perhatikan pernyataan berikut(1).2log10+2log3=2log13(2).2log20−2log4=2log5(3).2log12+2log16=−4(4).2log12×2log16=−4Pernyataan di atas yang benar adalaha.(1)dan(2)b.(1)dan(3)c.(2)dan(3)d.(2)dan(4)e.(3)dan(4)Jawab:dPerhatikan pernyataan (1)2log10+2log3=2log13adalah salah karena,alogb+alogc=alogbcPerhatikan pernyataan (2)2log20−2log4=2log5benar, karena2log20−2log4=2log204=2log5ingat sifat berikutalogb−alogc=alogbcPerhatikan pernyataan (3)2log12+2log16=−4salah, karena sama dengan sifat no (1) di atasyaitu:2log12+2log16=2log12.16=2log8=2log23=32log12×2log16=2log2−1×2log16=2log2−1×2log24=(−1).(4)=−4.
87.Jikalog2=0,301log3=0,477maka nilailog2253adalah....a.0,714d.0,778b.0,734c.0,756e.0,784Jawab:elog2253=log225.13=log(152).13=log15.23=23log15=23log3×5=23(log3+log5)=23(log3+log102)=23(log3+log10−log2)=23(log3+1−log2)=23(0,477+1,000+0,301)=23(1,176)=2,3523=0,784.
88.Fungsi invers darif(x)=5xa.f−1(x)=5−xb.f−1(x)=(15)xc.f−1(x)=(15)−xd.f−1(x)=5logxe.f−1(x)=xlog5Jawab:dDiketahui bahwa:f(x)=5x,maka inversnyaadalah:Langkah mula-mula dilogkanmasing-masing ruas untuk mencari nilaix,yaitu:logf(x)=log5x⇔logf(x)=xlog5⇔x=logf(x)log5=5logf(x)Selanjutnya kita gantixdenganf−1(x),danf(x)denganx,sehingga menjadi bentuk⇔f−1(x)=5logx.
91.Jikax=15log75dany=35log9125,maka nilai5x+3y−2xyadalah....KOMPETISI HARDIKNAS ONLINEPOSI(Pelatihan Olimpiade Sain Indonesia)Bidang Matematika 2020a.−1b.1c.3d.5e.7Jawab:e5x+3y−2xy=5(15log75)+3(35log9125)−2(15log75)(35log9125)=5(log75log15)+3(log9125log35)−2(log75log15)(log9125log35)=5(log3.52log3.5)+3(log−log125log3−log5)−2(log3.52log3.5)(log9−log125log3−log5)=5(log3+log52log3−log5)+3(log32−log53log3−log5)−2(log3+log52log3+log5)(log32−log53log3−log5)=5(log3+2log5log3−log5)+3(2log3−3log5log3−log5)−2(log3+2log5log3+log5)(2log3−3log5log3−log5)Misalkanlog3=A,log5=B
.Selanjutnya=5(A+2BA+B)+3(2A−3BA−B)−2(A+2BA+B)(2A−3BA−B)=(5A+10BA+B)+(6A−9BA−B)−(2A+4BA+B)(2A−3BA−B)=(5A+10B)(A−B)+(6A−9B)(A+B)A2−B2−(4A2−6AB+8AB−12B2A2−B2)=5A2−5AB+10AB−10B2A2−B2+6A2+6AB−9AB−9B2A2−B2−(4A2−6AB+8AB−12B2A2−B2)=7A2−7B2A2−B2=7(A2−B2)A2−B2=7
92.DiberikanA=6log16danB=12log27Terdapat bilangan-bilangan bulat positifa,b,dancsehingga(A+a)(B+b)=cNilai daria+b+cadalah....KOMPETISI HARDIKNAS ONLINEPOSI(Pelatihan Olimpiade Sain Indonesia)Bidang Matematika 2020a.23b.24c.27d.30e.34Jawab:....DiketahuiA=6log16=log16log6=log24log2.3=4log2log2+log3⇔log2+log3=4log2A...........(1)B=12log27=log27log12=log33log22.3=3log32log2+log3⇔2log2+log3=3log3B.........(2)ELIMINASIDari persamaan (1) dan (2) diperoleh:∙log2=3log3B−4log2A⇔log2=3Alog3−4Blog2AB⇔ABlog2=3Alog3−4Blog2⇔ABlog2+4Blog2=3Alog3⇔(AB+4B)log2=3Alog3⇔log2log3=3AAB+4B..........(3)∙log3=8log2A−3log3B⇔log3=8Blog2−3Alog3AB⇔ABlog3=8Blog2−3Alog3⇔ABlog3+3Alog3=8Blog2⇔(AB+3A)log3=8Blog2⇔log2log3=AB+3A8B...........(4)KESAMAANlog2log3=log2log3AB+3A8B=3AAB+4B⇔(AB+3A)(AB+4B)=(8B).(3A)⇔(B+3)(A+4)=24⇔(A+4)(B+3)=24KESIMPULANa=4,b=3,danc=24,makaa+b+c=4+3+24=31.
Informasi
Tidak ada komentar:
Posting Komentar
Informasi