Tampilkan postingan dengan label Practice Question 11 Preparation for PAS Odd Mathematics Specialization Class XI (Equations and Formulas for Trigonometric Sum and Difference). Tampilkan semua postingan
Tampilkan postingan dengan label Practice Question 11 Preparation for PAS Odd Mathematics Specialization Class XI (Equations and Formulas for Trigonometric Sum and Difference). Tampilkan semua postingan

Latihan Soal 11 Persiapan PAS Gasal Matematika Peminatan Kelas XI (Persamaan dan Rumus Jumlah dan Selisih Trigonometri)

$\begin{array}{ll}\\ 101.&\textrm{Nilai dari} \: \sin 1020^{\circ}=....\\ &\textrm{a}.\quad -1\\ &\textrm{b}.\quad \color{red}\displaystyle -\frac{1}{2}\sqrt{3}\\ &\textrm{c}.\quad \displaystyle -\frac{1}{2}\\ &\textrm{d}.\quad \displaystyle \frac{1}{2}\\ &\textrm{e}.\quad \displaystyle \frac{1}{2}\sqrt{3}\\\\ &\textrm{Jawab}:\qquad\color{red}\textbf{b}\\ &\begin{aligned}\sin 1020^{\circ}&=\sin \left ( 3\times 360^{\circ}-60^{\circ} \right )\\ &=\sin \left ( 0^{\circ}-60^{\circ} \right )\\ &=\sin \left ( -60^{\circ} \right )\\ &=-\sin 60^{\circ}\\ &=\color{red}-\displaystyle \frac{1}{2}\sqrt{3} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 102.&\textrm{Nilai dari} \: \cot (-1290)^{\circ}=....\\ &\textrm{a}.\quad \color{red}-\sqrt{3}\\ &\textrm{b}.\quad \displaystyle -\frac{1}{3}\sqrt{3}\\ &\textrm{c}.\quad \displaystyle \frac{1}{3}\sqrt{3}\\ &\textrm{d}.\quad \displaystyle -\frac{1}{2}\\ &\textrm{e}.\quad \displaystyle \frac{1}{2}\\ &\textrm{Jawab}:\qquad\color{red}\textrm{a}\\ &\begin{aligned}\cot (-1290)^{\circ}&=-\cot \left ( 3\times 360^{\circ}+210^{\circ} \right )\\ &=-\cot \left ( 0^{\circ}+210^{\circ} \right )\\ &=-\cot \left ( 210^{\circ} \right )\\ &=-\frac{1}{\tan 210^{\circ}}\\ &=-\frac{1}{\tan \left ( 180^{\circ}+30^{\circ} \right )}\\ &=-\frac{1}{\tan 30^{\circ}}\\ &=\color{red}-\displaystyle \sqrt{3} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 103.&\textrm{Nilai dari}\\ & \sin 240^{\circ}+\sin 225^{\circ}+\cos 315^{\circ}=....\\ &\begin{array}{lll}\\ \textrm{a}.\quad -\sqrt{3}\qquad&&\textrm{d}.\quad \displaystyle \frac{1}{2}\sqrt{3}\\ \textrm{b}.\quad \color{red}\displaystyle -\frac{1}{2}\sqrt{3}&\qquad&\textrm{e}.\quad \displaystyle \frac{1}{3}\sqrt{3}\\ \textrm{c}.\quad \displaystyle -\frac{1}{2} \end{array}\\ &\textrm{Jawab}:\qquad\color{red}\textrm{b}\\ &\begin{aligned}&\sin 240^{\circ}+\sin 225^{\circ}+\cos 315^{\circ}\\ &=\sin \left ( 180^{\circ}+60^{\circ} \right )+\sin \left ( 180^{\circ}+45^{\circ} \right )+\cos \left ( 360^{\circ}-45^{\circ} \right )\\ &=-\sin 60^{\circ}+\left [ -\sin 45^{\circ} \right ]+\cos 45^{\circ}\\ &=\left ( -\frac{1}{2}\sqrt{3} \right )+\left ( -\frac{1}{2}\sqrt{2} \right )+\frac{1}{2}\sqrt{2}\\ &=\color{red}-\frac{1}{2}\sqrt{3} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 104.&\textrm{Nilai dari} \\ & \displaystyle \frac{\sin 30^{\circ}+\sin 150^{\circ}+\cos 330^{\circ}}{\tan 45^{\circ}+\cos 210^{\circ}}=....\\ &\begin{array}{lll}\\ \textrm{a}.\quad \displaystyle \frac{1+\sqrt{3}}{1-\sqrt{3}}\\ \textrm{b}.\quad \displaystyle \frac{1-\sqrt{3}}{1+\sqrt{3}}\\ \textrm{c}.\quad \displaystyle \frac{2-\sqrt{3}}{2+\sqrt{3}}\\ \textrm{d}.\quad \color{red}\displaystyle \frac{2+\sqrt{3}}{2-\sqrt{3}}\\ \textrm{e}.\quad \displaystyle \frac{1+2\sqrt{3}}{1-2\sqrt{3}} \end{array}\\ &\textrm{Jawab}:\qquad\color{red}\textrm{d}\\ &\begin{aligned}&\displaystyle \frac{\sin 30^{\circ}+\sin 150^{\circ}+\cos 330^{\circ}}{\tan 45^{\circ}+\cos 210^{\circ}}\\ &=\displaystyle \frac{\sin 30^{\circ}+\sin \left ( 180^{\circ}-30^{\circ} \right )+\cos \left ( 360^{\circ}-30^{\circ} \right )}{\tan 45^{\circ}+\cos \left ( 180^{\circ}+30^{\circ} \right )}\\ &=\displaystyle \frac{\sin 30^{\circ}+\sin 30^{\circ}+\cos 30^{\circ}}{\tan 45^{\circ}-\cos 30^{\circ}}\\ &=\displaystyle \frac{\displaystyle \frac{1}{2}+\frac{1}{2}+\frac{1}{2}\sqrt{3}}{1-\displaystyle \frac{1}{2}\sqrt{3}}\\ &=\displaystyle \frac{1+\displaystyle \frac{1}{2}\sqrt{3}}{1-\displaystyle \frac{1}{2}\sqrt{3}}\\ &=\color{red}\displaystyle \frac{2+\sqrt{3}}{2-\sqrt{3}} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 105.&\textrm{Nilai dari} \\ &\displaystyle \frac{\sin 270^{\circ}\times \cos 135^{\circ}\times \tan 135^{\circ}}{\sin 150^{\circ}\times \cos 225^{\circ}}=....\\ &\begin{array}{lll}\\ \textrm{a}.\quad -2\qquad&&\textrm{d}.\quad 1\\ \textrm{b}.\quad \displaystyle -\frac{1}{2}&\textrm{c}.\quad \displaystyle \frac{1}{2}\qquad&\textrm{e}.\quad 2 \end{array}\\ &\textrm{Jawab}:\qquad\color{red}\textrm{e}\\ &\begin{aligned}&\displaystyle \frac{\sin 270^{\circ}\times \cos 135^{\circ}\times \tan 135^{\circ}}{\sin 150^{\circ}\times \cos 225^{\circ}}\\ &=\displaystyle \frac{\sin 270^{\circ}\times \cos \left ( 180^{\circ}-45^{\circ} \right )\times \tan \left ( 180^{\circ}-45^{\circ} \right )}{\sin \left ( 180^{\circ}-30^{\circ} \right )\times \cos \left ( 180^{\circ}+45^{\circ} \right )}\\ &=\displaystyle \frac{-1\times \left (-\cos 45^{\circ} \right )\times \left ( - \tan 45^{\circ}\right )}{\sin 30^{\circ}\times \left ( -\cos 45^{\circ} \right )}\\ &=\displaystyle \frac{-1\times \left ( -\displaystyle \frac{1}{2}\sqrt{2} \right )\times -1}{\displaystyle \frac{1}{2}\times \left ( -\frac{1}{2}\sqrt{2} \right )}\\ &=\displaystyle \frac{-\frac{1}{2}\sqrt{2}}{-\frac{1}{4}\sqrt{2}}\\ &=\color{red}\displaystyle 2\end{aligned} \end{array}$

$\begin{array}{ll}\\ 106.&\textrm{Perhatikanlah gambar kurva berikut ini}\end{array}$.


$\begin{array}{ll}\\ .\, \: \: \quad&\begin{array}{llllll}\\ \textrm{a}.&y=-2\cos 2x\\ \textrm{b}.&y=2\cos \displaystyle \frac{3}{2}x\\ \textrm{c}.&y=-2\cos \displaystyle \frac{3}{2}x\\ \textrm{d}.&y=2\sin \displaystyle \frac{3}{2}x\\ \textrm{e}.&y=-2\sin \displaystyle \frac{3}{2}x\\\\ &(\textbf{SIMAK UI 2009 Mat Das}) \end{array}\\ &\\ &\textrm{Jawab}:\quad\color{red}\textbf{c}\\ &\begin{aligned}&\textrm{Dari gambar tampak jelas bahwa}\\ &\textrm{grafik di atas atas adalah grafik}\: \textbf{fungsi cosinus}\\ &\textrm{dengan amplitudo 2 dan periodenya}\: :\: \displaystyle \frac{3}{2}\pi \\ &\textrm{Maka persamaan grafiknya adalah}:\\ &y=2\cos \displaystyle \frac{3}{2}\pi \\ &\textrm{Karena posisinya terbalik, maka}\\ &y=\color{red}-2\cos \displaystyle \frac{3}{2}\pi \\ \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 107.&\textrm{Nilai minimum jika}\\ & f(x)=\left ( 2004\cos 2005x-2006 \right )^{2}+2007\\ & \textrm{adalah}=....\\ &\begin{array}{llllll}\\ \textrm{a}.&2005\\ \textrm{b}.&2007\\ \textrm{c}.&\color{red}2011\\ \textrm{d}.&2013\\ \textrm{e}.&\textrm{tidak ada satupun jawaban dari a sampai d}\\\\ &(\textbf{NUS Mathematics A Level}) \end{array}\\ &\\ &\textrm{Jawab}:\quad\color{red}\textbf{c}\\ &\begin{aligned}&f(x)=\left ( 2004\cos 2005x-2006 \right )^{2}+2007\\ &\textrm{Supaya bernilai minimum, }\\ &\textrm{maka nilai}\quad \color{red}\cos 500x=1,\\ & \color{black}\textrm{ingat nilai}\: \: -1\leq \cos n\pi \leq 1\\ &\textrm{maka},\\ &f_{min}=\left ( 2004.1-2006 \right )^{2}+2007\\ &=(-2)^{2}+2007\\ &=4+2007\\ &=\color{red}2011 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 108.&\textrm{Penyelesaian persamaan}\\ & \cos ^{2}x-2\cos x=4\sin x-2\sin x\cos x\\ & \textrm{adalah}\, ....\\ &\begin{array}{llllll}\\ \textrm{a}.&\pi -\cot ^{-1}\left ( \displaystyle \frac{1}{2} \right )\\ \textrm{b}.&\pi +\tan ^{-1}\left ( \displaystyle \frac{1}{2} \right )\\ \textrm{c}.&\pi -\cot ^{-1}\left ( -1 \right )\\ \textrm{d}.&\color{red}\pi +\tan ^{-1}\left ( -\displaystyle \frac{1}{2} \right )\\ \textrm{e}.&\pi -\tan ^{-1}\left ( \displaystyle \frac{1}{4} \right ) \\ \end{array}\\ &\\ &\textrm{Jawab}:\quad\color{red}\textbf{d}\\ &\begin{aligned}&\textrm{Perhatikan bahwa},\\ &\cos ^{2}x-2\cos x=4\sin x-2\sin x\cos x\\ &\cos x\left ( \cos x-2 \right )=2\sin x\left ( 2-\cos x \right )\\ &\cos x\left ( \cos x-2 \right )=-2\sin x\left ( \cos x -2\right )\\ &\left (\cos x+2\sin x \right )\left ( \cos x-2 \right )=0\\ &\left (\cos x+2\sin x \right )=0\: \: \textrm{atau} \: \: \left ( \cos x-2 \right )=0\\ &2\sin x=-\cos x\: \: \textbf{(mm)}\: \: \textrm{atau}\: \: \cos x=2\: \: \textbf{(tm)}\\ &\textrm{maka}\\ &\displaystyle \frac{\sin x}{\cos x}=-\displaystyle \frac{1}{2}\: \: \Leftrightarrow \: \: \tan x=-\displaystyle \frac{1}{2}\\ &x=\color{red}\tan ^{-1}\left ( -\displaystyle \frac{1}{2} \right )+k.\pi ,\quad k\in \mathbb{Z} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 109.&\textrm{Jika diketahui bahwa}\\ & \sin \beta -\tan \beta -2\cos \beta +2=0\\ & \textrm{dengan}\: \: 0<\beta <\displaystyle \frac{\pi }{2},\\ &\textrm{maka himpunan harga}\: \: \sin \beta =....\\ &\begin{array}{llllll}\\ \textrm{a}.&\color{red}\left \{ \displaystyle \frac{2}{5}\sqrt{5} \right \}\\ \textrm{b}.&\left \{ 0 \right \}\\ \textrm{c}.&\left \{ \displaystyle \frac{2}{5}\sqrt{5},0 \right \}\\ \textrm{d}.&\left \{ \displaystyle \frac{1}{5}\sqrt{5} \right \}\\ \textrm{e}.&\left \{ \displaystyle \frac{1}{5}\sqrt{5},0 \right \}\\\\ &\textbf{(SIMAK UI 2009)} \end{array}\\ &\\ &\textrm{Jawab}:\quad\color{red}\textbf{a}\\ &\begin{aligned}&\sin \beta -\tan \beta -2\cos \beta +2=0\\ &\sin \beta -\displaystyle \frac{\sin \beta }{\cos \beta } -2\cos \beta +2=0\\ &\sin \beta \cos \beta -\sin \beta -2\cos^{2} \beta +2\cos \beta =0\\ &\sin \beta \left ( \cos \beta -1 \right )-2\cos \beta \left ( \cos \beta -1 \right )=0\\ &\left ( \sin \beta -2\cos \beta \right )\left ( \cos \beta -1 \right )=0\\ &\left ( \sin \beta -2\cos \beta \right )=0\: \textbf{(mm)}\\ &\qquad \textrm{atau}\quad \left ( \cos \beta -1 \right )=0\: \textbf{(tmm)}\\ &\textrm{maka},\\ &\left ( \sin \beta -2\cos \beta \right )=0\\ &\sin \beta =2\cos \beta\\ &\displaystyle \frac{\sin \beta }{\cos \beta }=2\\ &\tan \beta =2=\displaystyle \frac{2}{1},\qquad \textrm{buatlah ilustrasi} \\ &\textrm{dengan membuat segitiga siku-siku}.\\ &\textrm{Sehingga akan didapatkan nilai}\\ &\sin \beta =\color{red}\displaystyle \frac{2}{5}\sqrt{5} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 110.&\textrm{Diketahui bahwa}\\ &\sin \theta -\cos \theta =\displaystyle \frac{\sqrt{5}-\sqrt{3}}{2}\: \: \textrm{dan}\\ & \cos ^{3}\theta -\sin ^{3}\theta =\displaystyle \frac{1}{a}\left ( b\sqrt{5}-c\sqrt{3} \right ),\\ &\textrm{dengan}\: \: a,\: b,\: c\: \: \textrm{adalah bilangan asli, maka}\\ &(1) \quad b-c>0\\ &(2) \quad a-b=7\\ &(3)\quad a-3b+c=0\\ &(4)\quad a+b+c=12\\ &\begin{array}{llllll}\\ \textrm{a}.&(1),\: (2).\: \textrm{dan}\: (3)\: \textrm{benar}\\ \textrm{b}.&(1),\: \textrm{dan}\: (3)\: \textrm{benar}\\ \textrm{c}.&\color{red}(2),\: \textrm{dan}\: (4)\: \textrm{benar}\\ \textrm{d}.&\textrm{hanya}\: (4)\: \textrm{yang benar}\\ \textrm{e}.&\textrm{semuanya benar}\\\\ &(\textbf{SIMAK UI 2015 Mat IPA}) \end{array}\\ &\\ &\textrm{Jawab}:\quad\color{red}\textbf{c}\\ &\begin{aligned}&\sin \theta -\cos \theta =\displaystyle \frac{\sqrt{5}-\sqrt{3}}{2}\\ &\sin ^{2}\theta +\cos^{2}\theta -2\sin \theta \cos \theta =\displaystyle \frac{8-2\sqrt{5}}{4}\\ &1-2\sin \theta \cos \theta =\displaystyle \frac{8-2\sqrt{5}}{4}\\ &\sin \theta \cos \theta =\displaystyle \frac{\sqrt{5}-2}{4}\\ &\textrm{maka},\\ &\cos ^{3}\theta -\sin ^{3}\theta \\ &\qquad=\left ( \cos \theta -\sin \theta \right )\left ( \cos ^{2}\theta +\sin \theta \cos \theta +\sin ^{2}\theta \right )\\ &=\left ( \displaystyle \frac{\sqrt{3}-\sqrt{5}}{2} \right )\left ( 1+\displaystyle \frac{\sqrt{5}-2}{4} \right )\\ &=\displaystyle \frac{1}{8}\left ( \sqrt{3}-\sqrt{5} \right )\left ( 2+\sqrt{5} \right )\\ &=\displaystyle \frac{1}{8}\left ( 2\sqrt{3}+3\sqrt{5}-2\sqrt{5}-5\sqrt{3} \right )\\ &=\displaystyle \frac{1}{8}\left (\sqrt{5}-3\sqrt{3} \right )=\displaystyle \frac{1}{a}\left ( b\sqrt{5}-c\sqrt{3} \right ) \left\{\begin{matrix} a=8\\ b=1\\ c=3 \end{matrix}\right.\\ &\textrm{sehingga}\\ &a-b=8-1=\color{red}7\\ &a+b+c=8+1+3=\color{red}12 \end{aligned} \end{array}$