Tampilkan postingan dengan label dispersion data. Tampilkan semua postingan
Tampilkan postingan dengan label dispersion data. Tampilkan semua postingan

Koefisien Keragaman (Koefisien Variansi)

A. Pengertian

Pada bahasan ini untuk membandingkan dua atau lebih distribusi data yang sejenis dapat digunakan koefisien keragaman. Koefisien variansi adalah nilai dari standar deviasi suatu data dibagi dengan rata-ratanya.

B. Formula koefisien Variansi

Jika diketahui  $S$ adalah simpangan baku dan  $\overline{x}$ adalah rataan hitung suatu data, maka koefidien variansinya (V) dirumuskan dengan:

$V=\displaystyle \frac{S}{\overline{x}}\times 100%$.



$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

Contoh 1

Coba perhatikan lagi data pada halaman ini di sini, dengan datanya adalah:

$\begin{array}{|c|c|c|c|c|c|}\hline \textrm{Nilai}&47-49&50-52&53-55&56-58&59-61\\\hline \textrm{Frek}&2&4&6&5&3\\\hline \end{array}$. 

Dari perhitungan untuk data tersebut didapatkan besar rataan hitungnya adalah 54,45 dan simpangan bakunya adalah 3,58, maka koefisien dari variansi dari data tersebut adalah:

$\begin{aligned}V&=\displaystyle \frac{S}{\overline{x}}\times 100\%\\ &=\displaystyle \frac{3,58}{54,45}\times 100\%\\ &=\color{red}6,57\% \end{aligned}$.

Contoh 2

Diketahui nilai ulangan matematika suatu kelas di suatu waktu memiliki rataan 78 dengan simpangan bakunya adalah 7, sedangkan untuk nilai ulangan kimia dari kelas tersebut mendapatkan rataan 62 dan simpangan bakunya adalah 6. Tentukanlah mata pelajaran mana dari keduanya yang telah diuhikan itu yang memiliki penyebaran data yang lebih kecil

Jawab:

Dari data di atas, jika kita hanya berpatokan pada hasil simpangan baku kedua mapel yang telah diujikan tersebut tentunya mapel kimia akan memiliki persebaran yang lebih kecil dari pada mapel matematika. Akan tetapi adalah perhitungan yang lebih baik tentang permasalahan di atas, yaitu dengan menggunkan rumus koefisien variansi sebagaimana perhitungan berikut ini:

$\begin{array}{|c|c|}\hline \textrm{Mapel Matematika}&\textrm{Mapel Kimia}\\\hline \begin{aligned}V&=\displaystyle \frac{7}{78}\times 100\%\\ &=8,97\% \end{aligned}&\begin{aligned}V&=\displaystyle \frac{6}{62}\times 100\%\\ &=9,68\% \end{aligned}\\\hline \end{array}$

Tampak dari perhitungan koefisien variansi di atas bahwa nilai ulangan mapel matematika memiliki sebaran relatif lebih kecil dari pada hasil ulangan mapel kimia.

C. Angka Baku

Misalkan ada suatu permasalahan seorang siswa saat ulangan matematika mendapatkan nilai 8 di mana rataan kelasnya adalah 6,5 dan simpangan bakunya adalah 2. Sedangkan untuk hasil ulangan kimia ia berhasil mendapatkan nilai 9 yang rataan kelasnya 7,5 dan simpangan bakunya 3. Pertanyaannnya adalah hasil yang didapatkan anak tersebut kedudukannya mana yang lebih baik?

Untuk menjawab pertanyaan di atas kita dapat menggunkan angka baku, yaitu  $z=\displaystyle \frac{x-\overline{x}}{S}$.

Berdasarkan nilai kita bisa tentukan angka baku nilai siswa tersebut, yaitu:

$\begin{aligned}\textrm{matematika}\: :\: z&=\displaystyle \frac{8-6,5}{2}=\color{blue}0,75\\ \textrm{fisika}\qquad\quad\: :\: z&=\displaystyle \frac{9-7,2}{3}=\color{red}0,60 \end{aligned}$.

Dari perhitungan angka bakunya, tampak bahwa nilai ulangan matematika siswa tersebut lebih besar dari angka baku fisikanya. Hal ini menunjukkan nilai matematika siswa tersebut adalah yang lebih baik.



Ukuran Penyebaran Data Berkelompok (Materi Kelas XII Matematika Wajib) (Bagian 2)

 B. 2 Data Berkelompok

$\begin{array}{|c|l|l|}\hline \textrm{No}&\textrm{Data Dispersi}&\textrm{Keterangan}\\\hline 1.&\textrm{Jangkauan}&\begin{aligned}\textrm{a}.\: \: &\textrm{selisih titik tengah}\\ &\textrm{kelas tertinggi dengan}\\ &\textrm{titik tengah kelas}\\ &\textrm{terendah}\\ \textrm{b}.\: \: &\textrm{selisih tepi atas kelas}\\ &\textrm{kelas tertinggi dengan}\\ &\textrm{tepi bawah kelas}\\ &\textrm{terendah} \end{aligned}\\\hline 2.&H&Q_{3}-Q_{1}\\\hline 3.&Q_{d}&\displaystyle \frac{1}{2}\left ( Q_{3}-Q_{1} \right )\\\hline 4.&SR&\displaystyle \frac{\displaystyle \sum_{i=1}^{k}f_{i}\left | x_{i}-\overline{x} \right |}{\displaystyle \sum_{i=1}^{k}f_{i}} \\\hline 5.&S^{2}&\displaystyle \frac{\displaystyle \sum_{i=1}^{k}f_{i} \left (x_{i}-\overline{x} \right )^{2} }{\displaystyle \sum_{i=1}^{k}f_{i}}\\\hline 6.&S&\sqrt{\displaystyle \frac{\displaystyle \sum_{i=1}^{k}f_{i} \left (x_{i}-\overline{x} \right )^{2} }{\displaystyle \sum_{i=1}^{k}f_{i}}}\\\hline \end{array}$.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll} 1.&\textrm{Tentukanlah nilai simpangan rata-ratanya}\\ &\begin{array}{|c|c|c|c|c|c|}\hline \textrm{Nilai}&\colorbox{white}{47-49}&\colorbox{white}{50-52}&\colorbox{white}{53-55}&\colorbox{white}{56-58}&\colorbox{white}{59-61}\\\hline \textrm{Frek}&2&4&6&5&3\\\hline \end{array}\\\\ &\textbf{Jawab}:\\ &\textbf{Alternatif 1}\\ &\begin{array}{ll} &\textrm{Perhatikan tabel berikut}\\ &\begin{array}{|c|c|c|c|c|c|}\hline \textrm{Nilai}&x_{i}&f_{i}&f_{i}.x_{i}&\left | x_{i}-\overline{x} \right |&f_{i}.\left | x_{i}-\overline{x} \right |\\\hline 47-49&48&2&96&6,45&12,49\\\hline 50-52&51&4&204&3,45&13,8\\\hline 53-55&\colorbox{yellow}{54}&6&\colorbox{yellow}{324}&\colorbox{yellow}{0,45}&\colorbox{yellow}{2,7}\\\hline 56-58&57&5&285&2,55&12,75\\\hline 59-61&60&3&180&5,55&16,65\\\hline \textrm{Jumlah}&&20&1089&&58,8\\\hline \end{array}\\ &\textrm{ingat}\: \: x_{i}=\textrm{nilai tengah interval kelas}\\ &\begin{aligned}\overline{x}&=\displaystyle \frac{\displaystyle \sum_{i=1}^{k}f_{i}.x_{i}}{\displaystyle \sum_{i=1}^{k}f_{i}}\\ &=54+\displaystyle \frac{1089}{20}=54+0,45=\color{red}54,45 \end{aligned}\\ &\begin{aligned}SR&=\displaystyle \frac{\displaystyle \sum_{i=1}^{k}f_{i}.\left | x_{i}-\overline{x} \right |}{\displaystyle \sum_{i=1}^{k}f_{i}}\\ &=\displaystyle \frac{58,8}{20}\\ &=\color{red}2,94 \end{aligned}\\ &\textrm{Jadi, simpangan rata-ratanya adalah}\: SR=2,94 \end{array} \\\\ &\textbf{Alternatif 2}\\ &\textrm{Perhatikan tabel berikut}\\ &\begin{array}{|c|c|c|c|c|c|c|}\hline \textrm{Nilai}&x_{i}&f_{i}&d_{i}&f_{i}.d_{i}&\left | x_{i}-\overline{x} \right |&f_{i}.\left | x_{i}-\overline{x} \right |\\\hline \colorbox{white}{47-49}&48&2&-6&-12&6,45&12,49\\\hline \colorbox{white}{50-52}&51&4&-3&-12&3,45&13,8\\\hline \colorbox{yellow}{53-55}&\colorbox{yellow}{54}&6&\colorbox{yellow}0&\colorbox{yellow}0&\colorbox{yellow}{0,45}&\colorbox{yellow}{2,7}\\\hline \colorbox{white}{56-58}&57&5&3&15&2,55&12,75\\\hline \colorbox{white}{59-61}&60&3&6&18&5,55&16,65\\\hline \textrm{Jumlah}&&20&&9&&58,8\\\hline \end{array}\\ &\textrm{ingat}\: \: x_{i}=\textrm{nilai tengah interval kelas}\\ &\begin{aligned}\overline{x}&=x_{s}+\displaystyle \frac{\displaystyle \sum_{i=1}^{k}f_{i}.d_{i}}{\displaystyle \sum_{i=1}^{k}f_{i}}\\ &=54+\displaystyle \frac{9}{20}=54+0,45=\color{red}54,45 \end{aligned}\\ &\begin{aligned}SR&=\displaystyle \frac{\displaystyle \sum_{i=1}^{k}f_{i}.\left | x_{i}-\overline{x} \right |}{\displaystyle \sum_{i=1}^{k}f_{i}}\\ &=\displaystyle \frac{58,8}{20}\\ &=\color{red}2,94 \end{aligned}\\ &\textrm{Jadi, simpangan rata-ratanya adalah}\: SR=2,94 \end{array}$.


$\begin{array}{ll} 2.&\textrm{Tentukanlah nilai varian/ragamnya}\\ &\textrm{dari data soal no.1 di atas}\\\\ &\textbf{Jawab}:\\ &\textrm{Perhatikan tabel berikut}\\ &\begin{array}{|c|c|c|c|c|c|}\hline \textrm{Nilai}&x_{i}&f_{i}&\left | x_{i}-\overline{x} \right |& (x_{i}-\overline{x})^{2}&f_{i}. (x_{i}-\overline{x})^{2} \\\hline 47-49&48&2&6,45&41,6025&83,205\\\hline 50-52&51&4&3,45&11,9025&47,61\\\hline 53-55&54&6&324&0,2025&1,215\\\hline 56-58&57&5&285&6,5025&32,5125\\\hline 59-61&60&3&180&30,8025&92,4075\\\hline \textrm{Jumlah}&&20&&&256,95\\\hline \end{array}\\ &\textrm{ingat}\: \: x_{i}=\textrm{nilai tengah interval kelas}\\ &\textrm{dan}\: \: \overline{x}=\color{red}54,45\: (\textrm{lihat soal no.1})\\ &\textrm{maka}\\ &\begin{aligned}S^{2}&=\displaystyle \frac{\displaystyle \sum_{i=1}^{k}f_{i}. (x_{i}-\overline{x})^{2} }{\displaystyle \sum_{i=1}^{k}f_{i}}\\ &=\displaystyle \frac{256,95}{20}\\ &=\color{red}12,8475 \end{aligned}\\ &\textrm{Jadi, varian/ragamnya adalah}\\ & S^{2}=12,8475 \end{array}$.


$\begin{array}{ll} 3.&\textrm{Tentukanlah nilai simpangan baku dari}\\ &\textrm{dari data soal no.1 di atas}\\\\ &\textbf{Jawab}:\\ &S=\sqrt{S^{2}}=\sqrt{12,8475}\approx \color{red}3,58 \end{array}$.

Ukuran Penyebaran Data Tunggal (Materi Kelas XII Matematika Wajib) (Bagian 1)

A. Pengertian

Ukuran penyebaran data adalah nilai dari ukuran yang memberikan gambaran sejauh mana data menyebar atau menyimpang (dispersi/deviasi) dari ukuran pemusatan data. Dalam hal ini bagian yang akan disinggung dalam materi ini adalah: Jangkauan (Range), Jangkauan antar kuartil, Simpangan kuartil, Simpangan rata-rata, Ragam (Variansi), Simpangan baku (Deviasi Standar), Koefisien variansi.

$\begin{array}{|c|l|c|}\hline \textrm{No}&\: \: \: \: \textrm{Data Dispersi}&\textrm{Simbol}\\\hline 1.&\textrm{Jangkauan}&R\: \: \textrm{atau}\: \: J\\\hline 2.&\textrm{Jangkauan}&H\\ &\textrm{antarkuartil}&\\\hline 3.&\textrm{Simpangan}&Q_{d}\\ &\textrm{kuartil}&\\\hline 4.&\textrm{Langkah}&L\\\hline 5.&\textrm{Pagar dalam}&Q_{1}-L\\\hline 6.&\textrm{Pagar luar}&Q_{3}-L\\\hline 7.&\textrm{Simpangan}&SR\\ &\textrm{rata-rata}&\\\hline 8.&\textrm{Ragam/variansi}&S^{2}\\\hline 9&\textrm{Simpangan baku}&S\\\hline 10.&\textrm{Koefisien variansi}&V\\\hline \end{array}$.

Sebagai catatan bahwa $H$ selain disebut jangkauan antarkuartil sebagaian ada yang menyebut dengan istilah rentang antar kuartil dan terkadang pula dengan sebutan jangkauan interkuartil (Inter Quartile Range) dan juga terkadang menyebutnya dengan hamparan. Untuk $Q_{d}$  selanjutnyanya ada yang buku yang menyebutnya dengan istilah simpangan kuartil terkadang juga rentang semi interkuartil atau jangkauan antarkuartil.

Perhatikan gambar distribusi frekuensi suatu data berikut

B. Ukuran Penyebaran Data

B. 1 Data Tunggal

$\begin{array}{|c|l|c|}\hline \textrm{No}&\quad \textrm{Data}&\textrm{Formula}\\\hline 1.&R\: \: \textrm{atau}\: \: J&x_{max}-x_{min}\\\hline 2.&H&Q_{3}-Q_{1}\\\hline 3.&Q_{d}&\displaystyle \frac{1}{2}\left ( Q_{3}-Q_{1} \right )\\\hline 4.&L&\displaystyle \frac{3}{2}\left ( Q_{3}-Q_{1} \right )\\\hline 5.&Q_{1}-L&Q_{1}-L\\\hline 6.&Q_{3}-L&Q_{3}-L\\\hline 7.&SR&\displaystyle \frac{1}{n}\displaystyle \sum_{i=1}^{n}\left | x_{i}-\overline{x} \right |\\\hline 8.&S^{2}&\displaystyle \frac{1}{n}\displaystyle \sum_{i=1}^{n}\left ( x_{i}-\overline{x} \right )^{2}\\\hline 9&S&\sqrt{S2}\\\hline 10.&V&\displaystyle \frac{S}{\overline{x}}\times 100 \%\\\hline \end{array}$.

Catata: Data ukuran yang kurang dari pagar dalam dan atau lebih besar dari pagar luar dinamakan pencilan.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll} 1.&\textrm{Diberikan data berikut}\\ &\color{purple}\begin{array}{lllllll} 30&32&32&43&50&51\\ 53&53&58&58&58&60\\ 63&64&66&67&68&69\\ 70&72&75&78&80&82\\ 84&85&86&86&83&83 \end{array}\\ &\textrm{Tentukan}\\ &\textrm{a}.\quad \textrm{Jangkauan}\\ &\textrm{b}.\quad Q_{1},\, Q_{2},\, \textrm{dan}\: \: Q_{3}\\ &\textrm{c}.\quad \textrm{Jangkauan Antarkuartil}\\ &\textrm{d}.\quad \textrm{Simpangan Kuartil}\\ &\textrm{e}.\quad \textrm{Pagar Dalam}\\ &\textrm{f}.\quad \textrm{Pagar Luar}\\ &\textrm{g}.\quad \textrm{Pencilan}\\\\ &\textbf{Jawab}:\\ &\textrm{Perhatikan sajian data dalam bentuk}\\ &\textrm{diagram}\: \textbf{batang daun}\: \textrm{berikut}\\ &\begin{array}{|c|l|}\hline \textbf{Batang}&\: \quad\quad\textbf{Daun}\\\hline \color{red}3&0\: \: 2\: \: 2\\ \color{red}4&3\\ \color{red}5&0\: \: 1\: \: 3\: \: 3\: \: 8\: \: 8\: \: 8\\ \color{red}6&0\: \: 3\: \: 4\: \: 6\: \: 7\: \: 8\: \: 9\\ \color{red}7&0\: \: 2\: \: 5\: \: 8\\ \color{red}8&0\: \: 2\: \: 3\: \: 3\: \: 4\: \: 5\: \: 6\: \: 6\\\hline \end{array}\\ &\begin{aligned}\textrm{Diketa}&\textrm{hui}\: \: \color{blue}n=30\\ \textrm{a}.\quad \: J&=x_{max}-x_{min}=86-30=\color{red}56\\ \textrm{b}.\: \: \: Q_{1}&=\left ( x_{._{\frac{1}{4}n+\frac{1}{2}}} \right )=\left ( x_{._{\frac{1}{4}.30+\frac{1}{2}}} \right )=x_{.8}=53\\ Q_{2}&=\left ( x_{._{\frac{2}{4}n+\frac{1}{2}}} \right )=\left ( x_{._{\frac{2}{4}.30+\frac{1}{2}}} \right )\\ &=\displaystyle \frac{x_{.15}+x_{.16}}{2}=\displaystyle \frac{66+67}{2}=66,7\\ Q_{3}&=\left ( x_{._{\frac{3}{4}n+\frac{1}{2}}} \right )=\left ( x_{._{\frac{3}{4}.30+\frac{1}{2}}} \right )=x_{.23}=80\\ \textrm{c}.\: \: \: H&=Q_{3}-Q_{1}\\ &=x_{._{23}}-x_{._{8}}=80-53=27\\ \end{aligned} \end{array}$

$.\qquad\begin{aligned}\textrm{d}.\: \: \: Q_{d}&=\displaystyle \frac{1}{2}\left ( Q_{3}-Q_{1} \right )\\ &=\displaystyle \frac{1}{2}(H)=\displaystyle \frac{1}{2}\left ( 27 \right )=\color{red}13,5\\ \textrm{e}.\: \quad L&=\displaystyle \frac{3}{2}(H)=\displaystyle \frac{3}{2}(27)=\color{red}40,5\\ \textrm{P}&\textrm{agar dalam}:\\ &=Q_{1}-L=53-40,5=\color{red}12,5\\ \textrm{P}&\textrm{agar luar}:\\ &=Q_{1}-L=80+40,5=\color{red}120,5\\ \textrm{g}.\: \quad \textrm{D}&\textrm{ari fakta yang ada data ukuran}\\ &\textrm{yang besarnya kurang dari}\\ &\textrm{pagar dalam dan lebih besar dari}\\ &\textrm{pagar luar tidak ada, maka} \\ &\textrm{tidak ada}\: \color{red}\textbf{data pencilan} \end{aligned}$.


$\begin{array}{ll} 2.&\textrm{Diberikan data berikut}\\ &\color{purple}\begin{array}{lllllll} 73&74&66&65&68&65\\ 60&64&78&79&81&61\\ 72&74&71&68&75&76\\ 96&56&64&80&84&43\end{array}\\ &\textrm{Tentukan}\\ &\textrm{a}.\quad \textrm{Jangkauan}\\ &\textrm{b}.\quad Q_{1},\, Q_{2},\, \textrm{dan}\: \: Q_{3}\\ &\textrm{c}.\quad \textrm{Jangkauan Antarkuartil}\\ &\textrm{d}.\quad \textrm{Simpangan Kuartil}\\ &\textrm{e}.\quad \textrm{Pagar Dalam}\\ &\textrm{f}.\quad \textrm{Pagar Luar}\\ &\textrm{g}.\quad \textrm{Pencilan}\\\\ &\textbf{Jawab}:\\ &\textrm{Perhatikan sajian data dalam bentuk}\\ &\textrm{diagram}\: \textbf{batang daun}\: \textrm{berikut}\\ &\begin{array}{|c|l|}\hline \textbf{Batang}&\: \quad\quad\textbf{Daun}\\\hline \color{red}4&3\\ \color{red}5&6\\ \color{red}6&0\: \: 1\: \: 4\: \: 4\: \: 5\: \: 5\: \: 6\: \: 8\: \: 8\\ \color{red}7&1\: \: 2\: \: 3\: \: 4\: \: 4\: \: 5\: \: 6\: \: 8\: \: 9\\ \color{red}8&0\: \: 1\: \: 3\\ \color{red}9&6\\\hline \end{array}\\ &\begin{aligned}\textrm{Diketa}&\textrm{hui}\: \: \color{blue}n=24\\ \textrm{a}.\quad \: J&=x_{max}-x_{min}=96-43=\color{red}53\\ \textrm{b}.\: \: \: Q_{1}&=\left ( x_{._{\frac{1}{4}n+\frac{1}{2}}} \right )=\left ( x_{._{\frac{1}{4}.24+\frac{1}{2}}} \right )=x_{_{6,5}}\\ &=\displaystyle \frac{1}{2}\left ( x_{._{6}}+x_{._{7}} \right )=\displaystyle \frac{64+65}{2}=\color{red}64,5\\ Q_{2}&=\left ( x_{._{\frac{2}{4}n+\frac{1}{2}}} \right )=\left ( x_{._{\frac{2}{4}.24+\frac{1}{2}}} \right )=x_{_{12,5}}\\ &=\displaystyle \frac{x_{.12}+x_{.13}}{2}=\displaystyle \frac{71+72}{2}=\color{red}71,5\\ Q_{3}&=\left ( x_{._{\frac{3}{4}n+\frac{1}{2}}} \right )=\left ( x_{._{\frac{3}{4}.24+\frac{1}{2}}} \right )=x_{_{18,5}}\\ &=\displaystyle \frac{x_{_{18}}+x_{_{19}}}{2}=\displaystyle \frac{76+78}{2}=\color{red}77\\ \textrm{c}.\: \: \: H&=Q_{3}-Q_{1}\\ &=77-64,5=12,5\\ \end{aligned} \end{array}$.

$.\qquad\begin{aligned}\textrm{d}.\: \: \: Q_{d}&=\displaystyle \frac{1}{2}\left ( Q_{3}-Q_{1} \right )\\ &=\displaystyle \frac{1}{2}(H)=\displaystyle \frac{1}{2}\left ( 12,5 \right )=\color{red}6,26\\ \textrm{e}.\: \quad L&=\displaystyle \frac{3}{2}(H)=\displaystyle \frac{3}{2}(12,5)=\color{red}18,75\\ \textrm{P}&\textrm{agar dalam}:\\ &=Q_{1}-L=64,5-18,75=\color{red}45,75\\ \textrm{P}&\textrm{agar luar}:\\ &=Q_{1}-L=77+18,75=\color{red}95,75\\ \textrm{g}.\: \quad \textrm{D}&\textrm{ari fakta di atas terdapat}\: \textbf{pencilan}\\ &\textrm{yaitu}:\: \color{red}43 \: \color{black}\textrm{dan}\: \: \color{red}96 \end{aligned}$.


$\begin{array}{ll} 3.&\textrm{Diberikan data berikut}\\ &\color{purple}\begin{array}{lllllll} \color{black}\textrm{a}.&3&4&5&6&7\\ \color{black}\textrm{b}.&1&2&5&8&9\end{array}\\ &\textrm{Tentukan}\\ &\textrm{a}.\quad \textrm{Simpangan rata-rata}\\ &\textrm{b}.\quad \textrm{Ragam}\\ &\textrm{c}.\quad \textrm{Simpangan baku}\\\\ &\textbf{Jawab}:\\ &\textrm{Untuk data}:3,4,5,6,7\\ &\begin{aligned}\textrm{Diketahu}&\textrm{i}\: \: \color{blue}n=5\\ \textrm{a}.\quad \: \overline{x}=&\displaystyle \frac{3+4+5+6+7}{5}=\frac{25}{5}=\color{red}5\\ \textrm{sel}&\textrm{anjutnya}\\ \textrm{SR}&=\displaystyle \frac{1}{n}\displaystyle \sum_{i=1}^{n}\left | x_{i}-\overline{x} \right | \\ &=\displaystyle \frac{1}{5}\left (\left | 3-5 \right | +\left | 4-5 \right |+\left | 5-5 \right |+\left |6-5 \right |+\left | 7-5 \right | \right )\\ &=\displaystyle \frac{1}{5}\left ( \left | -2 \right |+\left | -1 \right |+\left | 0 \right |+\left | 1 \right |+\left | 2 \right | \right )\\ &=\displaystyle \frac{1}{5}(2+1+0+1+2)\\ &=\displaystyle \frac{6}{5}=\color{red}1,2 \end{aligned}\\ &\begin{aligned}\textrm{b}.\quad \: \textrm{S}^{2}&=\displaystyle \frac{1}{n}\displaystyle \sum_{i=1}^{n}\left ( x_{i}-\overline{x} \right )^{2} \\ &=\displaystyle \frac{1}{5}\left ((3-5)^{2} +(4-5)^{2}+(5-5)^{2}+(6-5)^{2}+(7-5)^{2} \right )\\ &=\displaystyle \frac{1}{5}\left ( 4+1+0+1+4 \right )\\ &=\displaystyle \frac{1}{5}(8)\\ &=\displaystyle \frac{8}{5}=\color{red}1,6\\ \textrm{c}.\quad \: \: \: S&=\sqrt{S^{2}}\\ &=\sqrt{1,6}\approx \color{red}1,26 \end{aligned}\\\\ &\textrm{Dan untuk data}:1,2,5,8,9\\ &\begin{aligned}\textrm{Diketahu}&\textrm{i}\: \: \color{blue}n=5\\ \textrm{a}.\quad \: \overline{x}=&\displaystyle \frac{1+2+5+8+9}{5}=\frac{25}{5}=\color{red}5\\ \textrm{sel}&\textrm{anjutnya}\\ \textrm{SR}&=\displaystyle \frac{1}{n}\displaystyle \sum_{i=1}^{n}\left | x_{i}-\overline{x} \right | \\ &=\displaystyle \frac{1}{5}\left (\left | 1-5 \right | +\left | 2-5 \right |+\left | 5-5 \right |+\left |8-5 \right |+\left | 9-5 \right | \right )\\ &=\displaystyle \frac{1}{5}\left ( \left | -4 \right |+\left | -3 \right |+\left | 0 \right |+\left | 3 \right |+\left | 4 \right | \right )\\ &=\displaystyle \frac{1}{5}(4+3+0+3+4)\\ &=\displaystyle \frac{14}{5}=\color{red}2,8 \end{aligned}\\ &\begin{aligned}\textrm{b}.\quad \: \textrm{S}^{2}&=\displaystyle \frac{1}{n}\displaystyle \sum_{i=1}^{n}\left ( x_{i}-\overline{x} \right )^{2} \\ &=\displaystyle \frac{1}{5}\left ((1-5)^{2} +(2-5)^{2}+(5-5)^{2}+(8-5)^{2}+(9-5)^{2} \right )\\ &=\displaystyle \frac{1}{5}\left ( 16+9+0+9+16 \right )\\ &=\displaystyle \frac{1}{5}(50)\\ &=\displaystyle \frac{50}{5}=\color{red}10\\ \textrm{c}.\quad \: \: \: S&=\sqrt{S^{2}}\\ &=\sqrt{10}\approx \color{red}3,16 \end{aligned} \end{array}$.

$\LARGE\colorbox{aqua}{LATIHAN SOAL}$.

$\begin{array}{ll} 1.&\textrm{Tentukan nilai Jangkauan},Q_{1},Q_{2},Q_{3}\\ &hamparan,\: \textrm{simpangan kuartil, langkah}\\ &\textrm{pagar dalam, pagar luar, dan pencilan}\\ &\textrm{dari data berikut}\\ &\color{red}\begin{array}{llll} \color{black}\textrm{a}.&3,5,7,9,1,2,8,2,3,4,3,5,7\\ \color{black}\textrm{b}.&10,11,12,13,8,9,4,5,7,5\end{array} \end{array}$.

$\begin{array}{ll} 2.&\textrm{Tentukan simpangan rata-rata}\\ &\textrm{ragam, dan simpangan baku}\\ &\textrm{dari data berikut}\\ &\color{red}\begin{array}{llll} \color{black}\textrm{a}.&3,5,7,9,1\\ \color{black}\textrm{b}.&10,11,12,13,8,9,4,15,7,5\end{array} \end{array}$.

$\begin{array}{ll} 3.&\textrm{Empat buah bilangan memiliki mean,}\\ &\textrm{tentukanlah keempat bilangan tersebut}\\ \end{array}$.

$\begin{array}{ll} 4.&\textrm{Diketahui datum-datum}\\ &:x-4,x-2,x+1,x+2,x+4,x+5\\ &\textrm{tentukanlah}\\ &\textrm{a}.\quad\textrm{nilai simpangan baku(nyatakan dalam)\: }x\\ &\textrm{b}.\quad\textrm{nilai}\: \: x\: \: \textrm{dan simpangan baku jika mean}\\ & \: \: \: \: \quad\textrm{dari data di atas adalah 9} \end{array}$.

$\begin{array}{ll} 5.&\textrm{Diketahui simpangan baku}\\ &:2,4,7,11,9-n,9+n\: \: \textrm{adalah}\: \: \sqrt{11}\\ &\textrm{tentukanlah}\\ &\textrm{a}.\quad\textrm{mean}\\ &\textrm{b}.\quad\textrm{nilai}\: \: n\: \: \textrm{yang mungkin} \end{array}$.


DAFTAR PUSTAKA

  1. Johanes, Kastolan, Sulasim. 2004. Kompetensi Matematika SMA Kelas 2 Semester 1 Program Ilmu Alam Kurikulum Berbasis Kompetensi. Jakarta: YUDHISTIRA.
  2. Kanginan, M., Terzalgi, Y. 2014. Matematika untuk SMA-MA/SMK Kelas XI (Wajib). Bandung: Srikandi Empat Widya Utama.
  3. Sharma, S.N., dkk. 2017. Jelajah Matematika 3 SMA Kelas XII Program Wajib. Jakarta: YUDHISTIRA.