$\begin{array}{ll}\\ 11.&\textrm{Fungsi berikut yang tidak mempunyai }\\ &\textrm{asimtot vertikal adalah}\: ....\\ &\begin{array}{llllll}\\ \textrm{a}.&f(x)=\displaystyle \frac{x+2}{x^{2}-3}&\\ \textrm{b}.&f(x)=\displaystyle \frac{x}{(x-2)^{2}}\\ \color{red}\textrm{c}.&f(x)=\displaystyle \frac{x^{2}-9}{x+3}\\ \textrm{d}.&f(x)=\displaystyle \frac{-3}{x}\\ \textrm{e}.&\textrm{semuanya mempunyai asimtot vertikal} \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{Perh}&\: \textrm{atikanlah opsi jawaban}\: \: c,\: \textrm{yaitu}:\\ f(x)&=\displaystyle \frac{x^{2}-9}{x+3}\: \\ \textrm{Jika}&\: \textrm{disederhanakan akan menjadi }\\ &\textbf{fungsi linear}\: \: \textrm{yaitu}:\\ f(x)&=\displaystyle \frac{x^{2}-9}{x+3}=\displaystyle \frac{(x+3)(x-3)}{x+3}=x-3\\ \textrm{sehi}&\textrm{ngga fungsi pada opsi}\: \: c\\ & \textrm{adalah berupa persamaan linear}\\ &\textrm{yang secara otomatis }\\ &\textbf{tidak akan memiliki asimtot} \end{aligned} \end{array}$
Contoh Soal 2 Fungsi
$\begin{array}{ll}\\ 6.&\textrm{Diketahui bahwa}\\ &f(x)=\begin{cases} 0,&\textrm{untuk}\: x<0\\ x^{2},&\textrm{untuk}\: 0\leq x< 1\\ 2x-1,&\textrm{untuk}\: x\geq 1 \end{cases}\\ &\textrm{Nilai dari}\: f(-1)+f\left ( \displaystyle \frac{1}{2} \right )-f(3)\: \textrm{adalah}.... \\ &\begin{array}{llllll}\\ \textrm{a}.&-5\displaystyle \frac{1}{4}&&&\textrm{d}.&4\displaystyle \frac{3}{4}\\\\ \color{red}\textrm{b}.&-4\displaystyle \frac{3}{4}&\textrm{c}.&4&\textrm{e}.&5\displaystyle \frac{1}{4} \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{Diketahui}\: &\\ f(x)&=\begin{cases} 0,&\textrm{untuk}\: x<0\\ x^{2},&\textrm{untuk}\: 0\leq x< 1\\ 2x-1,&\textrm{untuk}\: x\geq 1 \end{cases}\\ \textrm{maka nilai}&\: \: f(-1)+f\left ( \displaystyle \frac{1}{2} \right )-f(3)\\ &=0+\left ( \displaystyle \frac{1}{2} \right )^{2}-\left ( 2(3)-1 \right )\\ &=\displaystyle \frac{1}{4}-5\\ &=-4\displaystyle \frac{3}{4} \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 7.&\textrm{Jika diketahui}\: \: f\left ( x+\displaystyle \frac{1}{x} \right )=x^{3}+\displaystyle \frac{1}{x^{3}}\: ,\\ &\textrm{maka nilai dari}\: \: f\left ( \displaystyle \frac{5}{2} \right )\: \: \textrm{adalah}.... \\ &\begin{array}{llllll}\\ \textrm{a}.&2\displaystyle \frac{1}{8}&&&\color{red}\textrm{d}.&8\displaystyle \frac{1}{8}\\\\ \textrm{b}.&2\displaystyle \frac{1}{2}&\textrm{c}.&4\displaystyle \frac{1}{8}&\textrm{e}.&12\displaystyle \frac{1}{8} \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{Perhatikan}\, &\: \textrm{bahwa}:\\ (p+q)^{3}&=p^{3}+3p^{2}q+3pq^{2}+q^{3}\\ \textrm{Jika kita su}&\textrm{bstitusikan}\: \: p=x^{3}\: \: \textrm{dan}\: \: q=\displaystyle \frac{1}{x^{3}}\\ \left ( x+\displaystyle \frac{1}{x} \right )^{3}&=x^{3}+3x^{2}\left ( \displaystyle \frac{1}{x} \right )+3x\left ( \displaystyle \frac{1}{x} \right )^{2}+\left ( \displaystyle \frac{1}{x} \right )^{3}\\ &=x^{3}+\left ( \displaystyle \frac{1}{x} \right )^{3}+3x+\displaystyle \frac{3}{x}\\ &=\left ( x^{3}+\displaystyle \frac{1}{x^{3}} \right )+3\left ( x+\displaystyle \frac{1}{x} \right )\\ \textrm{sehingga}\quad&\\ f\left ( x+\displaystyle \frac{1}{x} \right )&=x^{3}+\displaystyle \frac{1}{x^{3}}\\ &=\left ( x+\displaystyle \frac{1}{x} \right )^{3}-3\left ( x+\displaystyle \frac{1}{x} \right )\\ f(u)&=u^{3}-3u,\: \: \textrm{maka}\\ f\left ( \displaystyle \frac{5}{2} \right )&=\left ( \displaystyle \frac{5}{2} \right )^{3}-3\left ( \displaystyle \frac{5}{2} \right )\\ &=\displaystyle \frac{125}{8}-\frac{15}{2}\\ &=\displaystyle \frac{65}{8}\\ &=8\displaystyle \frac{1}{8} \end{aligned} \end{array}$
$\begin{array}{ll}\\ 8.&\textrm{Misal fungsi}\: \: f\: \: \textrm{terdefinisi untuk }\\ &\textrm{seluruh bilangan real}\: \: x.\\ &\textrm{Jika}\: \: f(p+q)=f(pq)\: \: \textrm{untuk semua}\: \: p,\: q\\ & \textrm{bilangan bulat positif dan}\: \: f(1)=2,\\ &\textrm{maka nilai}\: \: f(2021)=....\\ &\begin{array}{llllll}\\ \textrm{a}.&0&&&\textrm{d}.&3\\\\ \textrm{b}.&1&\color{red}\textrm{c}.&2&\textrm{e}.&5 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{Diketahui}\: & \textrm{bahwa}\\ f(1)&=2\: \: \textrm{dan}\\ f(p+q)&=f(pq)\\ \textrm{maka}&\\ f(2)&=f(1+1)=f(1.1)=f(1)=2\\ f(3)&=f(1+2)=f(1.2)=f(2)=f(1)=2\\ f(4)&=f(1+3)=f(1.3)=f(3)=f(2)=f(1)=2\\ f(5)&=f(1+4)=f(1.4)=f(4)=f(3)=f(2)=f(1)=2\\ \vdots &\\ f(2021)&=\cdots =\cdots =\cdots =f(2)=f(1)=2 \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 9.&\textrm{Jika}\: \: a_{_{0}}=\displaystyle \frac{2}{5}\: \: \textrm{dan}\: \: a_{n+1}=2\left | a_{n} \right |-1, \textrm{maka nilai}\: \: a_{_{2022}}\\ &\textrm{adalah}....\\ &\begin{array}{llllll}\\ \color{red}\textrm{a}.&-0,6&&&\textrm{d}.&0,4\\\\ \textrm{b}.&-0,2&\textrm{c}.&0,2&\textrm{e}.&0,6 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textrm{Diketahui}\: & \textrm{bahwa}\\ a_{_{0}}&=\displaystyle \frac{2}{5}=0,4\: \: \textrm{dan}\: \: a_{n+1}=2\left | a_{n} \right |-1,\: \textrm{maka}\\ a_{_{1}}&=2\left | a_{_{0}} \right |-1=2\left | 0,4 \right |-1=0,8-1=-0,2\\ a_{_{2}}&=2\left | a_{_{1}} \right |-1=2\left | -0,2 \right |-1=2(0,2)-1\\ &=0,4-1=-0,6\\ a_{_{3}}&=2\left | a_{_{2}} \right |-1=2\left | -0,6 \right |-1=1,2-1=0,2\\ a_{_{4}}&=2\left | a_{_{3}} \right |-1=2\left | 0,2 \right |-1=0,4-1=-0,6=\textbf{a}_{_{\textbf{2}}}\\ a_{_{5}}&=2\left | a_{_{4}} \right |-1=2\left | -0,6 \right |-1=1,2-1=0,2=\textbf{a}_{_{\textbf{3}}}\\ a_{_{6}}&=2\left | a_{_{5}} \right |-1=2\left | 0,2 \right |-1=0,4-1=-0,6=\textbf{a}_{_{\textbf{2}}}\\ a_{_{7}}&=2\left | a_{_{6}} \right |-1=2\left | -0,6 \right |-1=1,2-1=0,2=\textbf{a}_{_{\textbf{3}}}\\ \vdots &\\ a_{_{2022}}&=\cdots =\cdots =\textbf{a}_{_{\textbf{2}}}=-0,6 \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 10.&\textrm{Kurva}\: \: f(x)=\displaystyle \frac{10}{x^{2}-10x+25}\\ &\textrm{mempunyai asimtot vertikal pada}....\\ &\begin{array}{llllll}\\ \textrm{a}.&x=0\: \: \textrm{saja}&&&\\ \color{red}\textrm{b}.&x=5\: \: \textrm{saja}&\\ \textrm{c}.&x=10\: \: \textrm{saja}\\ \textrm{d}.&x=0\: \: \textrm{dan}\: \: x=5\: \: \textrm{saja}\\ \textrm{e}.&x=0,\: x=5,\: \: \textrm{dan}\: \: x=10 \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{aligned}\textbf{Asimtot vertikal}&(\textbf{tegak})\: \textrm{diperoleh saat}\\ x^{2}-10x+25&=0\\ (x-5)^{2}&=0\\ x-5&=0\\ x&=5\\\\ \textrm{Ilustrasinya gamba}&\textrm{rnya adalah sebagai berikut}: \end{aligned} \end{array}.$
Contoh Soal Fungsi
$\begin{array}{ll}\\ 1.&\textrm{Relasi berikut yang akan berupa fungsi adalah}....\\ &\begin{array}{llllll}\\ \textrm{a}.&f(x)=\sqrt{x}&&&\\ \textrm{b}.&f(x)=1-\sqrt{x}&\\ \textrm{c}.&f(x)=\sqrt{x}+1&\\ \textrm{d}.&f(x)=\sqrt{x}-1\\ \color{red}\textrm{e}.&f(x)=\left | x \right | \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{array}{|c|l|c|l|}\hline \textrm{No}&\: \: \qquad \textrm{Fungsi}&\textrm{Grafik}\\\hline 1.\textrm{a}&f(x)=y=\sqrt{x}&y^{2}=x\\\hline 1.\textrm{b}&f(x)=y=1-\sqrt{x}&(1-y)^{2}=x\\\hline 1.\textrm{c}&f(x)=y=1+\sqrt{x}&(y-1)^{2}=x\\\hline 1.\textrm{d}&f(x)=y=\sqrt{x}-1&(y+1)^{2}=x\\\hline 1.\textrm{e}&f(x)=y=\left | x \right |&y=\begin{cases} x & \text{ jika} \: \: x\geq 0 \\ -x & \text{ jika } \: \: x<0 \end{cases}\\\hline \end{array}\\ &\begin{aligned}&\textrm{Dengan prepeta yang berbeda}\\ &\textrm{akan menghasilkan peta yang}\\ &\textrm{berbeda pula (fungsi bijektif)} \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 2.&\textrm{Fungsi dari himpunan A ke himpunan B }\\ &\textrm{berikut termasuk jenis fungsi} \end{array}$.
Lanjutan Materi Fungsi
$\color{blue}\textrm{F. Domain, Kodomain dan Range Fungsi}$
Suatu fungsi $\color{red}f$ dari himpunan $\color{red}\textrm{A}$ ke himpunan $\color{red}\textrm{B}$ dituliskan dengan bentuk $f:\textrm{A}\rightarrow \textrm{B}$. Jika fungsi $\color{red}f$ memetakan $\color{blue}x\color{black}\in \textrm{A}$ ke $\color{blue}y\color{black}\in \textrm{B}$, maka dituliskan dengan $f:x\rightarrow y$ atau $f:x\rightarrow f(x)$.
- Himpunan $\textrm{A}$ sebagai Domain/daerah asal/prapeta dari fungsi $\color{red}f$
- Himpunan $\textrm{B}$ sebagai Kodomain/daerah kawan dari fungsi $\color{red}f$
- Himpunan semua bayangan (bagian dari peta) disebut sebagai Range/daerah hasil dari fungsi $\color{red}f$.
$\begin{aligned}\textrm{Dari}\: &\textrm{ilustrasi di atas diperoleh bahwa}:\\ &\textrm{Domain}\qquad :\quad \color{blue}D_{_{f}}\color{black}=A=\left \{ a,b,c,d \right \}\\ &\textrm{Kodomain}\: \: \: \: :\quad \color{red}K_{_{f}}\color{black}=B=\left \{ 1,2,3,4,5 \right \}\\ &\textrm{Range}\: \: \: \qquad :\quad R_{_{f}}=\left \{ 1,2,3,5 \right \}\subseteq B \end{aligned}$.
$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah domain dan range dari fungsi}\\ & f(x)=\sqrt{x^{2}-x}\\\\ &\textrm{Jawab}:\\ &\begin{array}{|l|l|}\hline \qquad\qquad\qquad\qquad\textrm{Domain}&\qquad\quad\textrm{Range}\\\hline \begin{aligned}&\textrm{Kumpulan nilai}\: \: x\\ &\textrm{yang mungkin, yaitu:}\\ &x^{2}-x\geq 0\\ &x(x-1)\geq 0\\ &\color{blue}\textrm{dengan garis bilangan}\\ &\begin{array}{llllllllll}\\ +&+&+&-&-&-&-&+&+&+\\\hline &&0&&&&&1&& \end{array}\\ &\textrm{Jadi},\: \color{red}D_{_{f}}\color{black}=\left \{ x|x\leq 0\: \textrm{atau}\: x\geq 1 ,\: \: x\in \mathbb{R}\right \} \end{aligned}&\begin{aligned}&\textrm{Hasil akar pangkat 2}\\ &\textrm{tidak pernah negatif}\\ &\textrm{Jadi},\: \color{red}R_{_{f}}\color{black}=\left \{ y|y\geq 0 \right \}\\ &\\ &\\ &\\ &\\ &\\ & \end{aligned}\\\hline \end{array} \end{array}$.
$\begin{array}{ll}\\ 3.&\textrm{Tentukanlah domain dari}\\ &\begin{array}{ll}\\ \textrm{a}.\quad f(x)=2x+3&\\ \textrm{b}.\quad f(x)=\displaystyle \frac{2}{3x-15}&\\ \textrm{c}.\quad g(x)=\displaystyle \frac{x-1}{x^{2}-x-6}&\\ \textrm{d}.\quad g(x)=\sqrt{x^{2}-1} &\\ \textrm{e}.\quad h(x)=\sqrt{3x+2}\\ \textrm{f}.\quad h(x)=\sqrt{\displaystyle \frac{x-1}{x^{2}-x-6}}\\ \textrm{g}.\quad k(x)=\: ^{^{2}}\log x^{2}-2x-15\\ \textrm{h}.\quad k(x)=\: ^{^{^{\textbf{(x+2)}}}}\log (x^{2}-2x-3)\end{array}\\\\ &\color{blue}\textrm{Jawab}: \end{array}.$
$. \qquad \begin{array}{|l|}\hline \begin{aligned}\textrm{a}.\quad f(x)&=2x+3\\ \color{red}D_{_{f}}&=\left \{ x|x\in \mathbb{R} \right \}\\ \end{aligned}\\\hline \begin{aligned}\textrm{b}.\quad f(x)&=\displaystyle \frac{2}{3x-15}\\ &\textrm{supaya terdefinisi}\\ &\textrm{maka},\\ &3x-15\neq 0\\ &x\neq 5,\: \: \textrm{sehingga}\\ \color{red}D_{_{f}}&=\left \{ x|x\neq 5,\: x\in \mathbb{R} \right \}\\ & \end{aligned}\\\hline \begin{aligned}\textrm{c}.\quad g(x)&=\displaystyle \frac{x-1}{x^{2}-x-6}\\ &\textrm{supaya terdefinisi}\\ &\textrm{maka},\\ &x^{2}-x-6\neq 0\\ &x\neq 3\: \textrm{dan}\: x\neq -2,\\ & \textrm{sehingga}\\ \color{red}D_{_{g}}&=\left \{ x|x\neq3\: \textrm{dan}\: x\neq -2,\: x\in \mathbb{R} \right \} \end{aligned}\\\hline \begin{aligned}\textrm{d}.\quad g(x)&=\sqrt{x^{2}-1}\\ \textrm{ma}&\textrm{ka}\: \: x^{2}-1\geq 0\\ &(x+1)(x-1)\geq 0\\ \color{red}D_{_{g}}&=\left \{ x|x\leq -1\: \: \textrm{atau}\: \: x\geq 1,\: x\in \mathbb{R} \right \}\\ \end{aligned}\\\hline \begin{aligned}\textrm{e}.\quad h(x)&=\sqrt{3x+2}\\ \textrm{ma}&\textrm{ka}\: \: 3x+2\geq 0\\ &\: \: x\geq -\displaystyle \frac{2}{3}\\ \color{red}D_{_{h}}&=\left \{ x|x\geq -\displaystyle \frac{2}{3},\: x\in \mathbb{R} \right \}\\ \end{aligned}\\\hline \begin{aligned}\textrm{f}.\quad h(x)&=\sqrt{\displaystyle \frac{x-1}{x^{2}-x-6}}\\ &=\sqrt{\displaystyle \frac{(x-1)}{(x-3)(x+2)}}\\ &=\sqrt{\displaystyle \frac{x-1}{(x-3)(x+2)}}\\ &\textrm{maka},\: \: \displaystyle \frac{x-1}{(x-3)(x+2)}\geq 0\\ \color{red}D_{_{h}}&=\left \{ x|-2<x\leq 1\: \textrm{atau}\: \: x>3,\: x\in \mathbb{R} \right \} \end{aligned}\\\hline \end{array}$.
$. \qquad \begin{array}{|l|}\hline \begin{aligned}\textrm{g}.\quad k(x)&=\: ^{^{^{2}}}\log (x^{2}-2x-15)\\ \textrm{sya}&\textrm{rat}\: \: (x^{2}-2x-15)>0\\ &\: \: \: \: \: \: \: \: (x-5)(x+3)>0\\ \color{red}D_{_{k}}&=\left \{ x|x<-3\: \: \textrm{atau}\: \: x>5,\: \: x\in \mathbb{R} \right \} \end{aligned}\\\hline \begin{aligned}\textrm{h}.\quad k(x)&=\: ^{^{^{\textbf{(x+2)}}}}\log (x^{2}-2x-3)\\ \textrm{sya}&\textrm{rat}\: \: 1.\: \begin{cases} (x+2) & >0\Rightarrow x>-2\\ (x+2) & \neq 0 \Rightarrow x\neq -2 \end{cases}\\ &\qquad 2.\: \: (x^{2}-2x-3)>0\Rightarrow (x-3)(x+1)>0\\ \color{red}D_{_{k}}&=\left \{ x|-2< x< -1\: \: \textrm{atau}\: \: x>3,\: \: x\in \mathbb{R}\right \}\end{aligned}\\\hline \end{array}$.
$\begin{array}{ll}\\ 4.&\textrm{Diketahui bahwa 2 buah fungsi}\\ &f(x)=2x+1\: \: \textrm{dan}\: \: g(x)=\sqrt{1-x}\\ &\begin{array}{ll}\\ \textrm{a}.\quad (f+g)(x)&\textrm{c}.\quad (f.g)(x)\\ \textrm{b}.\quad (f-g)(x)&\textrm{d}.\quad \left ( \displaystyle \frac{f}{g} \right )(x)\\ \end{array}\\\\ &\color{blue}\textrm{Jawab}:\\ &\begin{array}{|l|l|}\hline \begin{aligned}\textrm{a}.\quad (f+g)(x)&=f(x)+g(x)\\ &=(2x+1)+\sqrt{1-x}\\ D_{_{(f+g)}}&=\left \{ x|x\leq 1,\: \: x\in \mathbb{R} \right \} \end{aligned}\\\hline \begin{aligned}\textrm{b}.\quad (f-g)(x)&=f(x)-g(x)\\ &=(2x+1)-\sqrt{1-x}\\ D_{_{(f-g)}}&=\left \{ x|x\leq 1,\: \: x\in \mathbb{R} \right \} \end{aligned}\\\hline \begin{aligned}\textrm{c}.\quad (f.g)(x)&=f(x).g(x)\\ &=(2x+1)\sqrt{1-x}\\ &=\sqrt{(2x+1)^{2}(1-x)}\\ &\: \: \: \: \: \: (2x+1)^{2}(1-x)\geq 0\\ D_{_{(f.g)}}&=\left \{ x|x\leq 1,\: \: x\in \mathbb{R} \right \} \end{aligned}\\\hline \begin{aligned}\textrm{d}.\quad \left ( \displaystyle \frac{f}{g} \right )(x)&=....................\\ &....................\\ &.................... \end{aligned}\\\hline \end{array} \end{array}$
DAFTAR PUSTAKA
- Sodyarto. Nugroho, Maryanto. 2008. Matematika 2 untuk SMA dan MA Kelas XI Program IPA. Jakarta: Pusat Perbukuan Departemen Pendidikan Nasional.
- Sunardi, Waluyo, S., Sutrisno, & Subagya. 2005. Matematika 2 untuk SMA Kelas 2 IPA. Jakarta: BUMI AKSARA.
Fungsi (Matematika Wajib Kelas X)
$\color{blue}\textrm{A. Pendahuluan}$
$\begin{aligned}&\\\textrm{Fungsi}\: &\textrm{atau pemetaan dari A ke B adalah}\\ &\textrm{suatu relasi khusus yang memasangkan}\\ &\textrm{setiap} \: \: x\in A\: \: \textrm{ke tepat satu}\: \: y\in B.\\ & \end{aligned}$
$\color{red}\begin{array}{|l|l|}\hline \textrm{Notasi}&\color{black}f:x \rightarrow y\: \: \: \color{red}\textrm{atau}\: \: \: \color{black}f:x \rightarrow f(x) \\\hline \textrm{Dibaca}&\textrm{fungsi}\: \: \color{black}f\: \: \color{red}\textrm{memetakan}\: \: \color{black}x\in A\: \: \color{red}\textrm{ke}\: \: \color{black}y\in B\\\hline \: \: \: \: \color{black}A&\textrm{Domain atau daerah asal fungsi atau}\quad \color{black}D_{f}\\\hline \: \: \: \: \, \color{black}x&\textrm{prapeta(sebelum dipetakan)}\\\hline \: \: \: \: \color{black}B&\textrm{Kodomain atau daerah kawan fungsi atau}\quad \color{black}K_{f}\\\hline \: \: \: \: \, \color{black}y&\textrm{peta(bayangan dari prapeta) adalah Range}\\ &\textrm{atau}\quad \color{black}R_{f}\\\hline \end{array}$
Sebagai ilustrasi perhatikanlah gambar berikut!
- Menentukan titik-titik berupa pasangan terurut $(x,y)$ dalam tabel dengan $x$ anggota dari daerah asal (domain) dan $y$ adalah anggota dari daerah kawan (kodomain).
- mengkonversi titik-titik tadi ke dalam diagram kartesius
- menghubungkan titik-titik tersebut sehingga didapatkan grafik mulus