Tampilkan postingan dengan label graph of trigonometric functions. Tampilkan semua postingan
Tampilkan postingan dengan label graph of trigonometric functions. Tampilkan semua postingan

Grafik Fungsi Trigonometri

Sebelumnya telah diketahui perbandingan trigonometri diberbagai kuadan dan sudut-sudut yang berelasi, selanjutnya dapat digambarkan garfik fungsinya, yaitu : $y =\sin x$, $y =\cos x$, dan $y =\tan x$.

A. Grafik Fungsi Sinus

Berikut ilustrasi grafik fungsi sinus untuk  $-\pi \leq x\leq \pi$.


$\begin{aligned}&\textbf{Bentuk umum}\\ &f(x)=a\sin b\left ( x+c \right )+d\\ &\bullet \quad \textrm{periode}:\displaystyle \frac{360^{\circ}}{b}\: \: \textrm{atau}\: \: \displaystyle \frac{2\pi }{\left | b \right |}\\ &\bullet \quad \textrm{nilai maksimum}:\left | a \right |\\ &\bullet \quad \textrm{nilai minimum}:-\left | a \right |\\ &\bullet \quad \textrm{geseran grafik ke kiri}:c\\ &\bullet \quad \textrm{geseran grafik ke kanan}:-c\\ &\bullet \quad \textrm{geseran grafik ke atas}:d\\ &\bullet \quad \textrm{geseran grafik ke bawah}:-d\\ \end{aligned}$.

B. Grafik Fungsi Cosinus

Berikut ilustrasi grafik fungsi sinus untuk  $-\pi \leq x\leq \pi$.






$\begin{aligned}&\textbf{Bentuk umum}\\ &f(x)=a\cos b\left ( x+c \right )+d\\ &\bullet \quad \textrm{periode}:\displaystyle \frac{360^{\circ}}{b}\: \: \textrm{atau}\: \: \displaystyle \frac{2\pi }{\left | b \right |}\\ &\bullet \quad \textrm{nilai maksimum}:\left | a \right |\\ &\bullet \quad \textrm{nilai minimum}:-\left | a \right |\\ &\bullet \quad \textrm{geseran grafik ke kiri}:c\\ &\bullet \quad \textrm{geseran grafik ke kanan}:-c\\ &\bullet \quad \textrm{geseran grafik ke atas}:d\\ &\bullet \quad \textrm{geseran grafik ke bawah}:-d\\ \end{aligned}$.

C. Grafik Fungsi Tangen

Berikut ilustrasi grafik fungsi sinus untuk  $-\pi \leq x\leq \pi$.






$\begin{aligned}&\textbf{Bentuk umum}\\ &f(x)=a\tan b\left ( x+c \right )+d\\ &\bullet \quad \textrm{periode}:\displaystyle \frac{180^{\circ}}{b}\: \: \textrm{atau}\: \: \displaystyle \frac{\pi }{\left | b \right |}\\ &\bullet \quad \textrm{nilai maksimum}:\: \: \color{red}\textit{tidak ada}\\ &\bullet \quad \textrm{nilai minimum}:\: \: \color{red}\textit{tidak ada}\\ &\bullet \quad \textrm{geseran grafik ke kiri}:c\\ &\bullet \quad \textrm{geseran grafik ke kanan}:-c\\ &\bullet \quad \textrm{geseran grafik ke atas}:d\\ &\bullet \quad \textrm{geseran grafik ke bawah}:-d\\ \end{aligned}$.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Diketahui fungsi}\: \: f(x)=\displaystyle \frac{4}{5}\sin \left ( 2x-\displaystyle \frac{\pi }{3} \right )\\ &\textrm{tentukanlah}\\ &\textrm{a}.\quad \textrm{periode}\\ &\textrm{b}.\quad \textrm{nilai maksimu}\\ &\textrm{c}.\quad \textrm{nilai minimum}\\ &\textrm{d}.\quad \textrm{arah geseran fungsinya}\\ &\textrm{e}.\quad \textrm{gambarlah grafik fungsinya}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{Diket}&\textrm{ahui bahwa}\\ f(x)&=\displaystyle \frac{4}{5}\sin \left ( 2x-\displaystyle \frac{\pi }{3} \right )\\ &=\displaystyle \frac{4}{5}\sin 2\left ( x-\displaystyle \frac{\pi }{6} \right )\quad \textrm{atau boleh juga}\\ &\quad\qquad\qquad\textrm{dituliskan dengan bentuk}\\ &=\displaystyle \frac{4}{5}\sin 2\left ( x-30^{\circ} \right ) \end{aligned}\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Periodenya}:\: \: \left | \displaystyle \frac{360^{\circ}}{2} \right |=180^{\circ}\\ \textrm{b}.\quad&\textrm{Nilai maksimumnya}:\: \: \left | \displaystyle \frac{4}{5} \right |=\frac{4}{5}\\ \textrm{c}.\quad&\textrm{Nilai minimumnya}:\: \: -\left | \displaystyle \frac{4}{5} \right |=-\frac{4}{5}\\ \textrm{d}.\quad&\textrm{Arah geserannya ke kanan sejauh}: \: 30^{\circ}\\ \textrm{e}.\quad&\textrm{Berikut gambar ilustrasinya} \end{aligned} \end{array}$.


$\begin{array}{ll}\\ 2.&\textrm{Diketahui fungsi}\: \: f(x)=2\cos \left ( 2x-\displaystyle \frac{\pi }{4} \right )\\ &\textrm{tentukanlah}\\ &\textrm{a}.\quad \textrm{periode}\\ &\textrm{b}.\quad \textrm{nilai maksimu}\\ &\textrm{c}.\quad \textrm{nilai minimum}\\ &\textrm{d}.\quad \textrm{arah geseran fungsinya}\\ &\textrm{e}.\quad \textrm{gambarlah grafik fungsinya}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{Diket}&\textrm{ahui bahwa}\\ f(x)&=2\cos \left ( 2x-\displaystyle \frac{\pi }{4} \right )\\ &=2\cos 2\left ( x-\displaystyle \frac{\pi }{8} \right )\quad \textrm{atau boleh juga}\\ &\quad\qquad\qquad\textrm{dituliskan dengan bentuk}\\ &=2\cos 2\left ( x-22,5^{\circ} \right ) \end{aligned} \\ &\begin{aligned}\textrm{a}.\quad&\textrm{Periodenya}:\: \: \left | \displaystyle \frac{360^{\circ}}{2} \right |=180^{\circ}\\ \textrm{b}.\quad&\textrm{Nilai maksimumnya}:\: \: \left | 2 \right |=2\\ \textrm{c}.\quad&\textrm{Nilai minimumnya}:\: \: -\left | 2 \right |=-2\\ \textrm{d}.\quad&\textrm{Arah geserannya ke kanan sejauh}: \: 22,5^{\circ}\\ \textrm{e}.\quad&\textrm{Berikut gambar ilustrasinya} \end{aligned} \end{array}$.


$\begin{array}{ll}\\ 3.&\textrm{Diketahui fungsi}\: \: f(x)=\tan \left ( 2x-\displaystyle \frac{\pi }{4} \right )\\ &\textrm{tentukanlah}\\ &\textrm{a}.\quad \textrm{periode}\\ &\textrm{b}.\quad \textrm{nilai maksimu}\\ &\textrm{c}.\quad \textrm{nilai minimum}\\ &\textrm{d}.\quad \textrm{arah geseran fungsinya}\\ &\textrm{e}.\quad \textrm{gambarlah grafik fungsinya}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{Diket}&\textrm{ahui bahwa}\\ f(x)&=\tan \left ( 2x-\displaystyle \frac{\pi }{4} \right )\\ &=\tan 2\left ( x-\displaystyle \frac{\pi }{8} \right )\quad \textrm{atau boleh juga}\\ &\quad\qquad\qquad\textrm{dituliskan dengan bentuk}\\ &=\tan 2\left ( x-22,5^{\circ} \right ) \end{aligned} \\ &\begin{aligned}\textrm{a}.\quad&\textrm{Periodenya}:\: \: \left | \displaystyle \frac{180^{\circ}}{2} \right |=90^{\circ}\\ \textrm{b}.\quad&\textrm{Nilai maksimumnya}:\: \: \color{red}\textit{tidak ada}\\ \textrm{c}.\quad&\textrm{Nilai minimumnya}:\: \: \color{red}\textit{tidak ada}\\ \textrm{d}.\quad&\textrm{Arah geserannya ke kanan sejauh}: \: 22,5^{\circ}\\ \textrm{e}.\quad&\textrm{Berikut gambar ilustrasinya} \end{aligned} \end{array}$.