Belajar matematika sejak dini
6.Diketahui bahwaf(x)=x2−2,maka nilaiLimh→0f(x+h)−f(x)h=....a.x2−2d.xb.x2c.2xe.2x−2Jawab:Diketahuibahwaf(x)=x2−2,maka nilai untukLimh→0f(x+h)−f(x)h=Limh→0((x+h)2−2)−(x2−2)h=Limh→0x2+2xh+h2−2−x2+2h=Limh→02xh+h2h=Limh→0(2x+h)=2x
7.Diketahuif(x)=x−1,maka nilaiLimh→0f(2+h)−f(2)h=....a.12d.1b.−12c.0e.−1Jawab:Diketahui bahwaf(x)=x−1,makanilai untukLimh→0f(2+h)−f(2)h=Limh→0(2+h)−1−2−1h=Limh→0h+1−1h=Limh→0h+1−1h×h+1+1h+1+1=Limh→0(h+1)−1h×(h+1+1)=Limh→01(h+1+1)=10+1+1=12
8.(Mat Das SIMAK UI 2013)NilaiLimx→5x+2x+1x−2x+1=....a.3+2d.5b.5−26c.26e.5+26Jawab:Limx→5x+2x+1x−2x+1=5+25+15−25+1=5+265−26=3+2+23.23+2−23.2=3+23−2=3+23−2×3+23+2=3+2+263−2=5+26
9.(Mat IPA SBMPTN 2014)JikaLimx→a(f(x)+1g(x))=4danLimx→a(f(x)−1g(x))=−3,maka nilaiLimx→af(x).g(x)=....a.114d.414b.214c.314e.514Jawab:Perhatikan bahwa,Limx→a(f(x)+1g(x))=4Limx→a(f(x)−1g(x))=−3+2Limx→af(x)=1Limx→af(x)=12,sehinggaLimx→af(g)=27maka,Limx→af(x).g(x)=12×27=214
1NilaiLimx→2(6−xx2−4−1x−2)=....a.−12d.14b.−14c.0e.12Jawab:Limx→2(6−xx2−4−1x−2)=(6−222−4−12−2)=(40−10)=∞−∞hal ini tidak diperkenankanSehingga,Limx→2(6−xx2−4−1x−2)=Limx→2(6−xx2−4−(x+2)(x−2)(x+2))=Limx→2(6−xx2−4−x+2x2−4)=Limx→2(4−2xx2−4)=Limx→2(−2(x−2)(x+2)(x−2))=Limx→2(−2x+2)=−2(2+2)=−12
2.NilaiLimx→4x−42x−x=....a.−2d.12b.−12c.0e.2Jawab:Limx→4x−42x−x=(4−424−4)=00hal ini juga tidak diperkenankanSehingga,Limx→4x−42x−x=Limx→4(x+2)(x−2)x(2−x)=Limx→4(x+2)(x−2)−x(x−2)=Limx→4−(x+2)x=−4+24=−2+22=−2
3.NilaiLimx→1(2x−3x+1)(x−1)(x−1)2=....a.14d.2b.12c.1e.4Jawab:Limx→1(2x−3x+1)(x−1)(x−1)2=(2−3+1)(1−1)(1−1)2=0×002=00hal ini juga tidak diperkenankanSehingga,Limx→1(2x−3x+1)(x−1)(x−1)2=Limx→1((2x−1)×(x−1))(x−1)(x−1)(x−1)=Limx→1(2x−1)=2.1−1=2−1=1
4.NilaiLimx→3x+4−2x+1x−3=....a.−1147d.177b.−177c.0e.1147Jawab:Limx→3x+4−2x+1x−3=Limx→3x+4−2x+1x−3×x+4+2x+1x+4+2x+1=Limx→3(x+4)−(2x+1)(x−3)(x+4+2x+1)=Limx→3−−x+3(x−3)(x+4+2x+1)=Limx→3−1(x+4+2x+1)=−1(7+7)=−127=−127×77=−1147
5.JikaLimx→2ax−2a2x−x=6,maka nilaiaadalah....a.2d.−2b.1c.−1e.−3Jawab:Limx→2ax−2a2x−x=6dengan bantuan limit kanan yaitux=2+h⇒h→0Limh→0a(2+h)−2a2(2+h)−(2+h)=66=Limh→02a+ah−2a4+2h−(2+h)6=Limh→0ah4+2h−(2+h)×(4+2h+(2+h))(4+2h+(2+h))6=Limh→0ah×(4+2h+(2+h))4+2h−(4+4h+h2)6=Limh→0ah×(4+2h+(2+h))−2h−h26=Limh→0a×(4+2h+(2+h))−2−h6=a×(4+0+(2+0))−2−06=a(4+2)−2a(4)−2=6a(−2)=6a=−3