Belajar matematika sejak dini
6.Diketahui bahwaf(x)=x2−2,maka nilaiLimh→0f(x+h)−f(x)h=....a.x2−2d.xb.x2c.2xe.2x−2Jawab:Diketahuibahwaf(x)=x2−2,maka nilai untukLimh→0f(x+h)−f(x)h=Limh→0((x+h)2−2)−(x2−2)h=Limh→0x2+2xh+h2−2−x2+2h=Limh→02xh+h2h=Limh→0(2x+h)=2x
7.Diketahuif(x)=x−1,maka nilaiLimh→0f(2+h)−f(2)h=....a.12d.1b.−12c.0e.−1Jawab:Diketahui bahwaf(x)=x−1,makanilai untukLimh→0f(2+h)−f(2)h=Limh→0(2+h)−1−2−1h=Limh→0h+1−1h=Limh→0h+1−1h×h+1+1h+1+1=Limh→0(h+1)−1h×(h+1+1)=Limh→01(h+1+1)=10+1+1=12
8.(Mat Das SIMAK UI 2013)NilaiLimx→5x+2x+1x−2x+1=....a.3+2d.5b.5−26c.26e.5+26Jawab:Limx→5x+2x+1x−2x+1=5+25+15−25+1=5+265−26=3+2+23.23+2−23.2=3+23−2=3+23−2×3+23+2=3+2+263−2=5+26
9.(Mat IPA SBMPTN 2014)JikaLimx→a(f(x)+1g(x))=4danLimx→a(f(x)−1g(x))=−3,maka nilaiLimx→af(x).g(x)=....a.114d.414b.214c.314e.514Jawab:Perhatikan bahwa,Limx→a(f(x)+1g(x))=4Limx→a(f(x)−1g(x))=−3+2Limx→af(x)=1Limx→af(x)=12,sehinggaLimx→af(g)=27maka,Limx→af(x).g(x)=12×27=214
Informasi
Tidak ada komentar:
Posting Komentar
Informasi