$\begin{array}{ll}\\ 1.&\textrm{Perhatikanlah ilustrasi gambar berikut} \end{array}$
$\begin{array}{ll}\\ .\, \quad&\textrm{maka vektor}\: \: \vec{u}\: \: \textrm{adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&3\vec{i}+5\vec{j}&&&\textrm{d}.&-3\vec{i}-5\vec{j}\\ \textrm{b}.&5\vec{i}+3\vec{j}&\textrm{c}.&\color{red}-3\vec{i}+5\vec{j}&\textrm{e}.&-5\vec{i}+3\vec{j} \end{array}\\\\ &\textbf{Jawab}\\ &\textrm{Kita perhatikan lagi gambarnya}\\ &\begin{aligned}&\textrm{Vektor}\: \: \vec{u}\: \: \textrm{jika dinyatakan sebagai }\\ &\textrm{kombinasi linear adalah}\: \: \vec{u}=\color{red}-3\vec{i}+5\vec{j} \end{aligned} \end{array}$
$\begin{array}{ll}\\ 2.&\textrm{Panjang vektor}\: \: \vec{p}=\begin{pmatrix} 4\\ -8 \end{pmatrix}\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \displaystyle \sqrt{4}\\ &\textrm{b}.\quad \sqrt{12}\\ &\textrm{b}.\quad \sqrt{20}\\ &\textrm{d}.\quad \color{red}\displaystyle \sqrt{80}\\ &\textrm{e}.\quad \sqrt{100}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\vec{p}&=\begin{pmatrix} 4\\ -8 \end{pmatrix},\: \: \textrm{maka besar dari vektor}\\ \vec{p}&\: \: \textrm{adalah}=\left | \vec{p} \right |=\sqrt{x^{2}+y^{2}}\\ &\textrm{Yaitu}\\ \left | \vec{p} \right |&=\sqrt{4^{2}+(-8)^{2}}\\ &=\sqrt{16+64}=\color{red}\sqrt{80} \end{aligned} \end{array}$
$\begin{array}{ll}\\ 3.&\textrm{Perhatikanlah gambar berikut}\\ & \end{array}$.
$\begin{array}{ll}\\ .\quad &\textrm{Panjang vektor}\: \: \vec{h}\: \: \textrm{tersebut di atas adalah}....\\ &\textrm{a}.\quad 5\\ &\textrm{b}.\quad 7\\ &\textrm{c}.\quad \color{red}10\\ &\textrm{d}.\quad 12\\ &\textrm{e}.\quad 15\\\\ &\textrm{Jawab}\\ &\begin{aligned}\textrm{Diketahui}&\quad \vec{h}=\overline{OH}=8\vec{i}+6\vec{j}\\ \vec{h}&=\sqrt{x_{H}^{2}+y_{H}^{2}}\\ &=\sqrt{8^{2}+6^{2}}\qquad \textbf{(ingat tripel Pythagoras)}\\ &=\sqrt{10^{2}}=\color{red}10 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 4.&\textrm{Vektor satuan dari}\: \: \vec{q}=3\vec{i}-4\vec{j}\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \displaystyle \frac{4}{5}\vec{i}-\frac{3}{5}\vec{j}\\ &\textrm{b}.\quad \color{red}\displaystyle \frac{3}{5}\vec{i}-\frac{4}{5}\vec{j}\\ &\textrm{c}.\quad 3\vec{i}-4\vec{j}\\ &\textrm{d}.\quad 4\vec{i}-3\vec{j}\\ &\textrm{e}.\quad 15\vec{i}-20\vec{j}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\vec{q}&=3\vec{i}-4\vec{j}\\ &\textrm{Vektor satuan dari vektor}\: \: \vec{q}\: \: \textrm{adalah}:\\ &\: \hat{e}_{_{\vec{q}}}=\displaystyle \frac{1}{\left | \vec{q} \right |}. \vec{q}\\ &\textrm{Sehingga}\\ \hat{e}_{_{\vec{q}}}&=\displaystyle \frac{1}{\sqrt{3^{2}+(-4)^{2}}}.\begin{pmatrix} 3\\ -4 \end{pmatrix}\\ &=\displaystyle \frac{1}{5}\begin{pmatrix} 3\\ -4 \end{pmatrix}\\ &\textrm{atau dalam vektor basis}\\ &=\color{red}\displaystyle \frac{3}{5}\vec{i}-\frac{4}{5}\vec{j} \end{aligned} \end{array}$
$\begin{array}{ll}\\ 5.&\textrm{Vektor berikut yang memiliki panjang}\\ & 29\: \: \textrm{satuan adalah}....\\ &\textrm{a}.\quad \displaystyle 18\vec{i}-19\vec{j}\\ &\textrm{b}.\quad \displaystyle 19\vec{i}-20\vec{j}\\ &\textrm{c}.\quad 20\vec{i}-21\vec{j}\\ &\textrm{d}.\quad \color{red}21\vec{i}-22\vec{j}\\ &\textrm{e}.\quad 22\vec{i}-23\vec{j}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\textrm{Ingat}&\textrm{lah akan tigaan Pythagoras}\\ &\begin{cases} (3,4,5) &\Rightarrow 3^{2}+4^{2}=5^{2} \\ (5,12,13) & \Rightarrow 5^{2}+12^{2}=13^{2} \\ (8,15,17) &\Rightarrow \cdots \\ (20,21,29)&\Rightarrow \cdots \\ \vdots & dll \end{cases}\\ \textrm{Sehin}&\textrm{gga}\\ \textrm{yang}&\: \: \textrm{paling mungkin adalah}\: : \: \\ &=\sqrt{20^{2}+21^{2}}=\sqrt{400+441}\\ &=\sqrt{841}\\ &=\color{red}29 \end{aligned} \end{array}$
Tidak ada komentar:
Posting Komentar
Informasi