Contoh 4 Vektor

 $\begin{array}{ll}\\ 16.&\textrm{Diketahui titik A(-1,1,0) dan titik B(1,-2,2)}\\ &\textrm{maka panjang vektor}\: \: \overrightarrow{BA}\: \: \textrm{adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\sqrt{2}&&&\textrm{d}.&\color{red}\sqrt{17}\\ \textrm{b}.&\sqrt{5}&\textrm{c}.&\sqrt{9}&\textrm{e}.&\sqrt{21} \end{array}\\\\ &\textbf{Jawab}\\ &\begin{aligned}&\textrm{Diketahui}\: \, \textrm{sebagaimana pada soal}\\ &\textrm{maka pan}\textrm{jang vektor}\: \: \overrightarrow{BA}\: \: \textrm{adalah}\\ &\left | \overrightarrow{BA} \right |=\sqrt{(1-(-1))^{2}+(-2-1)^{2}+(2-0)^{2}}\\ &=\sqrt{2^{2}+(-3)^{2}+2^{2}}\\ &=\sqrt{4+9+4}\\ &=\color{red}\sqrt{17} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 17.&\textrm{Vektor satuan untuk vektor}\: \: \vec{a}=\begin{pmatrix} 2, & 1, &-2 \end{pmatrix}=\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\begin{pmatrix} -\displaystyle \frac{2}{3}, & -\displaystyle \frac{1}{3}, &\displaystyle \frac{2}{3} \end{pmatrix}&\\\\ \textrm{b}.&\color{red}\begin{pmatrix} \displaystyle \frac{2}{3}, & \displaystyle \frac{1}{3}, &-\displaystyle \frac{2}{3} \end{pmatrix}&\\\\ \textrm{c}.&\begin{pmatrix} \displaystyle \frac{2}{4}, & \displaystyle \frac{1}{4}, &-\displaystyle \frac{2}{4} \end{pmatrix}&\\\\ \textrm{d}.&\begin{pmatrix} -\displaystyle \frac{2}{4}, & -\displaystyle \frac{1}{4}, &\displaystyle \frac{2}{4} \end{pmatrix}\\\\ \textrm{e}.&\begin{pmatrix} -\displaystyle \frac{2}{9}, &-\displaystyle \frac{1}{9}, & \displaystyle \frac{2}{9} \end{pmatrix} \end{array}\\\\ &\textbf{Jawab}\\ &\begin{aligned}\textrm{Vektor }&\: \textrm{satuan dari vektor}\: \: \vec{a}\: \: \textrm{adalah}:\\ \hat{a}&=\displaystyle \frac{\vec{a}}{\left | \vec{a} \right |}\\ &=\displaystyle \frac{\begin{pmatrix} 2, & 1, & -2 \end{pmatrix}}{\sqrt{2^{2}+1^{2}+(-2)^{2}}}\\ &=\displaystyle \frac{\begin{pmatrix} 2, & 1, & -2 \end{pmatrix}}{\sqrt{9}}\\ &=\displaystyle \frac{\begin{pmatrix} 2, & 1, & -2 \end{pmatrix}}{3}\\ &=\color{red}\begin{pmatrix} \displaystyle \frac{2}{3}, & \displaystyle \frac{1}{3}, &-\displaystyle \frac{2}{3} \end{pmatrix} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 18.&\textrm{Jika titik A(-2,3,5) dan B(4,1,-3)},\\ & \textrm{maka vektor posisi AB adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\begin{pmatrix} -6, & 2, &8 \end{pmatrix}&\\ \textrm{b}.&\begin{pmatrix} 8, & 2, &-6 \end{pmatrix}&\\ \textrm{c}.&\color{red}\begin{pmatrix} 6, & -2, &-8 \end{pmatrix}&\\ \textrm{d}.&\begin{pmatrix} -8 & -2, &6 \end{pmatrix}\\ \textrm{e}.&\begin{pmatrix} 2, &4, & 2 \end{pmatrix} \end{array}\\\\ &\textbf{Jawab}\\ &\begin{aligned}\textrm{Vektor posisi}&\: \textrm{dari}\: \: \overrightarrow{AB}\: \: \textrm{adalah}:\\ \overrightarrow{AB}&=\overrightarrow{OB}-\overrightarrow{OA}\\ &=\begin{pmatrix} 4\\ 1\\ -3 \end{pmatrix}-\begin{pmatrix} -2\\ 3\\ 5 \end{pmatrix}\\ &=\begin{pmatrix} 4+2\\ 1-3\\ -3-5 \end{pmatrix}\\ &=\begin{pmatrix} 6\\ -2\\ -8 \end{pmatrix}\quad\: \textbf{atau}\\ &=\color{red}\begin{pmatrix} 6, & -2, & -8 \end{pmatrix} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 19.&\textrm{Jika}\: \: \vec{p}=\begin{pmatrix} ^{2}\log 8x\\ \left ( ^{2}\log x \right )^{y} \end{pmatrix}\: \: \textrm{dan}\: \: \vec{q}=\begin{pmatrix} 5\\ 8 \end{pmatrix}\\ &\textrm{sehingga}\: \: \vec{p}=\vec{q}\: \: \: \textrm{nilai dari}\: \: x.y=.... \\ &\textrm{a}.\quad 6\\ &\textrm{b}.\quad \color{red}12\\ &\textrm{c}.\quad 18\\ &\textrm{d}.\quad 24\\ &\textrm{e}.\quad 30\\\\ &\textrm{Jawab}\\ &\begin{aligned}\textrm{Diketahui}\: &\: \textrm{bahwa}:\quad \vec{p}=\vec{q}\\ \begin{pmatrix} ^{2}\log 8x\\ \left ( ^{2}\log x \right )^{y} \end{pmatrix}&=\begin{pmatrix} 5\\ 8 \end{pmatrix},\quad\: \: \textrm{maka}\\ 8x&=2^{5}=32\\ \Leftrightarrow x&=\displaystyle \frac{32}{8}=4\\ \left (^{2}\log 4 \right )^{y}&=8\\ \Leftrightarrow 2^{y}&=8=2^{3}\\ \Leftrightarrow y&=3\\ \textrm{Sehingga}&\\ x.y&=4\times 3=\color{red}12 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 20.&\textrm{Jika}\: \: \vec{p}=\begin{pmatrix} 3x\\ 4x+y \end{pmatrix}\: \: \textrm{dan}\: \: \vec{q}=\begin{pmatrix} \displaystyle \frac{2x-4}{2}\\ 6 \end{pmatrix}\\ & \textrm{sehingga}\: \: \vec{p}=\vec{q}\: \: \: \textrm{nilai dari}\: \: 2x+y=.... \\ &\textrm{a}.\quad -12\\ &\textrm{b}.\quad 0\\ &\textrm{c}.\quad 8\\ &\textrm{d}.\quad \color{red}9\\ &\textrm{e}.\quad 19\\\\ &\textrm{Jawab}\\ &\begin{aligned}\textrm{Diketahui}\: &\: \textrm{bahwa}:\quad \vec{p}=\vec{q}\\ \begin{pmatrix} 3x\\ 4x+y \end{pmatrix}&=\begin{pmatrix} \displaystyle \frac{2x-4}{2}\\ 6 \end{pmatrix}\\ 3x&=\displaystyle \frac{2x-4}{2}\Leftrightarrow 6x=2x-4\\ \Leftrightarrow x&=-1\\ 4(-1)+y&=6\Leftrightarrow -4+y=6\\ \Leftrightarrow y&=6+4\\ y&=10\\ x+y&=(-1)+10=\color{red}9 \end{aligned} \end{array}$


Tidak ada komentar:

Posting Komentar

Informasi