$\color{blue}\textrm{A. Letak Titik Dalam Ruang}$
Perhatikan titik P dalam ruang berikut
Kita ambil sistem ortogonal ruang yang terdiri atas tiga bidang yang saling berpotongan tegak lurus menurut tiga potong garis sebagaimana ilustrasi gambar di atas.Ketiga garis potong tersebut berturut-turut adalah sumbu X, sumbu Y, dan sumbu Z.
Letak suatu titik P terhadap bidang OYZ, OXZ, dan OXY. Titik P(a,b,c) berarti P berjarak $\color{blue}\textrm{a}$ terhadap OYZ dan berjarak $\color{blue}\textrm{b}$ terhadap bidang OXZ, serta berjarak $\color{blue}\textrm{c}$ terhadap bidang OXY. Jadi, pasangan tiga buah bilangan riil berurutan menyatakan suatu titik dalam ruang dan demikian sebaliknya.
$\color{blue}\textrm{B. Vektor Dalam Ruang}$
Sebagaimana halnya vektor dalam bidang (dimensi dua), maka vektor dalam ruang atau $\textrm{R}^{3}$ juga dapat dinyatakan dengan 3 bilangan riil yang berbeda.
Sebagai misal
$\begin{aligned}\color{blue}P&(x,y,z), \: \: \textrm{maka vektor posisi}\: \: \overline{OP}\\ &\textrm{dalam ruang adalah}\\ &\overline{OP}=(x,y,z)\: \: \: \color{red}\textrm{atau}\\ &\overline{OP}=\begin{pmatrix} x\\ y\\ z \end{pmatrix}\: \: \: \textrm{ataupun juga dengan}\\ &\textrm{dengan vektor satuannya dalam}\\ &\textrm{hal ini adalah}:\bar{i},\: \bar{j},\: \&\: \bar{k}\: \: \textrm{adalah}:\\ &\overline{OP}=x\bar{i}+y\bar{j}+z\bar{k}\\\\ &\textrm{Selanjutnya}\\ &\textrm{vektor-vektor satuan di atas}\\ &\textrm{dalam ruang adalah}\\ &\bar{i}=\begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}\: \: \textrm{dan}\\ &\bar{j}=\begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix},\: \: \textrm{serta}\\ &\bar{k}=\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \end{aligned}$.
$\color{blue}\textrm{C. Vektor Basis Dalam Ruang}$
Perhatikan ilustrasi berikut
Dengan penjelasan hampir kurang lebih sama pada poin B di atas, maka vektor basis suatu titik P adalah vektor yang dinyatakan dengan vektor satuan, yaitu: $\overline{OP}=x\bar{i}+y\bar{j}+z\bar{k}$.
Sebagai contoh titik P(3,5,8) jika ilustrasikan adalah sebagai berikut
dan jika dinyakatan dengan vektor basis adalah : $\overline{OP}=3\bar{i}+5\bar{j}+8\bar{k}$.
$\LARGE\colorbox{yellow}{CONTOH SOAL}$.
Nyatakan vektor berikut dalam bentuk vektor baris, kolom dan basis
$\begin{aligned}&\textbf{Jawab}:\\ &\textrm{Diktahui vektor adalah}\: \: \vec{w}, \: \: \textrm{boleh juga}\\ &\textrm{disebut sebagai vektor posisi, sehingga}\\ &\textrm{dapat tuliskan juga dengan}:\: \vec{w}=\overline{OW}\\ &\textrm{Dan vektor posisi tersebut dapat dinyatakan}\\ &\textrm{dengan}:\\ &\textrm{a}.\quad \textrm{vektor baris}=(8,-6,13)\\ &\textrm{b}.\quad \textrm{vektor kolom}=\begin{pmatrix} 8\\ -6\\ -13 \end{pmatrix}\\ &\textrm{c}.\quad \textrm{vektor basis}=8\vec{i}-6\vec{j}-13\vec{k}\\ \end{aligned}$
$\color{blue}\textrm{D. Vektor Posisi dan Vektor Bebas dalam Ruang}$
Vektor posisi suatu titik adalah vektor yang titik pangkalnya terletak dititik pusat koordinat dan titik ujungntya pada titik tersebut. Sedangkan vektor bebas di sini adalah sembarang vektor yang titik pangkalnya tidak berada pada pusat koordinat dan berujung pada suatu titik. Perhatikanlah ilustrasi berikut ini
Pada ilustrasi gambar di atas ada dua vektor posisi yaitu $\overrightarrow{OA}=\bar{a}$ dan $\overrightarrow{OB}=\bar{b}$, sedangkan vektor bebas atau vektor sembarangnya adalah $\overrightarrow{AB}$.$\begin{aligned}&\textrm{Perhatikan bahwa}\\ &\textrm{pada gambar di atas}\\ &\overrightarrow{OA}+\overrightarrow{AB}=\overrightarrow{OB}\\ &\quad \bar{a}+\overrightarrow{AB}=\bar{b}\\ &\: \: \: \, \quad\quad \overrightarrow{AB}=\bar{b}-\bar{a} \end{aligned}$.
$\color{blue}\textrm{E. Modulus Vektor Dalam Ruang}$
Pengertian modulus vektor dalam ruang memiliki pengertian yang sama dalam bidang cuma yang membedakan adalah kondisinya saja. Karena baik di dalam ruang maupun bidang dalam menentukan modulus/bebsar/panjang suatu vektor adalah sama saja.
Jika suatu titik $A(x_{1},y_{1},z_{1})$ dan $B(x_{2},y_{2},z_{2})$, maka modulus dari dari kedua titik itu adalah jarak antara kedua titik tersebut, yaitu:
$\left | \overline{AB} \right |=\sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}+(z_{1}-z_{2})^{2}}$.
$\LARGE\colorbox{yellow}{CONTOH SOAL}$
$\begin{array}{ll}\\ 1.&\textrm{Jika di}\: \: \textrm{R}^{3}\: \: \textrm{diketahui titik}\\ &A(0,0,0),\: B(1,2,3),\: \: \textrm{dan}\: \: C(4,5,6)\\ &\textrm{Tentukanlah panjang}\\ &\textrm{a}.\quad \overline{AB}\\ &\textrm{b}.\quad \overline{AC}\\ &\textrm{c}.\quad \overline{BC}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\qquad \overline{AB}&=\begin{pmatrix} 1-0\\ 2-0\\ 3-0 \end{pmatrix}=\begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}\\ \left | \overline{AB} \right |&=\sqrt{1^{2}+2^{2}+3^{2}}\\ &=\sqrt{1+4+9}\\ &=\color{red}\sqrt{14} \end{aligned}\\ &\begin{aligned}\textrm{b}.\qquad \overline{AC}&=\begin{pmatrix} 4-0\\ 5-0\\ 6-0 \end{pmatrix}=\begin{pmatrix} 4\\ 5\\ 6 \end{pmatrix}\\ \left | \overline{AC} \right |&=\sqrt{4^{2}+5^{2}+6^{2}}\\ &=\sqrt{16+25+36}\\ &=\color{red}\sqrt{77} \end{aligned} \\ &\begin{aligned}\textrm{c}.\qquad \overline{BC}&=\begin{pmatrix} 4-1\\ 5-2\\ 6-3 \end{pmatrix}=\begin{pmatrix} 3\\ 3\\ 3 \end{pmatrix}\\ \left | \overline{BC} \right |&=\sqrt{3^{2}+3^{2}+3^{2}}\\ &=\sqrt{9+9+9}\\ &=\color{red}\sqrt{27} \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah panjang dari vektor}\\ &\bar{q}=3\bar{i}-\bar{j}-7\bar{k}\\\\ &\textrm{Jawab}:\\ &\begin{aligned} \bar{q}&=3\bar{i}-\bar{j}-7\bar{k}=\begin{pmatrix} 3\\ -1\\ -7 \end{pmatrix}\\ \left | \bar{q} \right |&=\sqrt{3^{2}+(-1)^{2}+(-7)^{2}}\\ &=\sqrt{9+1+49}\\ &=\color{red}\sqrt{59} \end{aligned} \end{array}$.
DAFTAR PUSTAKA
- Koesmartono, Rawuh (editor). 1973. Matematika Pendahuluan (Seri Matematika). Bandung: ITB
Tidak ada komentar:
Posting Komentar
Informasi