$\begin{array}{ll}\\ 31.&\textrm{Jika}\: \: \vec{p}=\begin{pmatrix} 2\\ -5 \end{pmatrix},\: \vec{q}=\begin{pmatrix} 4\\ 3 \end{pmatrix},\: \textrm{maka }\\ &\textrm{proyeksi skalar ortogonal vektor}\: \vec{p}\\ &\textrm{pada}\: \: \vec{q}\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \displaystyle \frac{3}{5}\\\\ &\textrm{b}.\quad \color{red}\displaystyle \frac{7}{5}\\\\ &\textrm{c}.\quad \displaystyle \frac{8}{5}\\\\ &\textrm{d}.\quad \displaystyle \frac{9}{5}\\\\ &\textrm{e}.\quad \displaystyle 2\\\\ &\textrm{Jawab}\\ &\begin{aligned}\left | \vec{r} \right |&=\displaystyle \frac{\vec{p}.\vec{q}}{\left | \vec{q} \right |}\\ &=\displaystyle \frac{\begin{pmatrix} 2\\ -5 \end{pmatrix}.\begin{pmatrix} 4\\ 3 \end{pmatrix}}{\sqrt{4^{2}+3^{2}}}\\ &=\displaystyle \frac{8+(-15)}{\sqrt{25}}\\ &=\left | \displaystyle \frac{-7}{5} \right |\\ &=\color{red}\displaystyle \frac{7}{5} \end{aligned} \end{array}$
$\begin{array}{ll}\\ 32.&\textrm{Panjang Proyeksi vektor}\: \: \vec{a}=\begin{pmatrix} 5\\ 1 \end{pmatrix}\\ & \textrm{pada}\: \: \vec{b}=\begin{pmatrix} 0\\ 4 \end{pmatrix}\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \displaystyle -1\\ &\textrm{b}.\quad -\displaystyle \frac{1}{2}\\ &\textrm{c}.\quad \color{red}1\\ &\textrm{d}.\quad \displaystyle 2\\ &\textrm{e}.\quad 4\\\\ &\textrm{Jawab}\\ &\begin{aligned}\left |\vec{c} \right |&=\left |\displaystyle \frac{\vec{a}.\vec{b}}{\left | \vec{b} \right |} \right |\\ &=\left |\displaystyle \frac{\begin{pmatrix} 5\\ 1 \end{pmatrix}\bullet \begin{pmatrix} 0\\ -4 \end{pmatrix}}{\left | \sqrt{0^{2}+(-4)^{2}} \right |} \right |\\ &=\left |\displaystyle \frac{0-4}{4} \right |=\left |-1 \right |=\color{red}1 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 33.&\textrm{Proyeksi vektor ortogonal}\: \: \vec{a}=\begin{pmatrix} 2\\ -4 \end{pmatrix}\\ & \textrm{pada}\: \: \vec{b}=\begin{pmatrix} -1\\ 2 \end{pmatrix}\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \begin{pmatrix} 2\\ -1 \end{pmatrix}\\ &\textrm{b}.\quad \begin{pmatrix} 2\\ -2 \end{pmatrix}\\ &\textrm{c}.\quad \color{red}\begin{pmatrix} 2\\ -4 \end{pmatrix}\\ &\textrm{d}.\quad \begin{pmatrix} -1\\ 2 \end{pmatrix}\\ &\textrm{e}.\quad \begin{pmatrix} -2\\ 4 \end{pmatrix}\\\\ &\textrm{Jawab}\\ &\begin{aligned}\vec{c}&=\left ( \displaystyle \frac{\vec{a}\bullet \vec{b}}{\left |\vec{b} \right |^{2}} \right ).\vec{b}\\ &=\left (\displaystyle \frac{\begin{pmatrix} 2\\ -4 \end{pmatrix}\bullet \begin{pmatrix} -1\\ 2 \end{pmatrix}}{(-1)^{2}+2^{2}} \right ).\begin{pmatrix} -1\\ 2 \end{pmatrix}\\ &=\left (\displaystyle \frac{-2-8}{1+4} \right ).\begin{pmatrix} -1\\ 2 \end{pmatrix}\\ &=-2\begin{pmatrix} -1\\ 2 \end{pmatrix}\\ &=\color{red}\begin{pmatrix} 2\\ -4 \end{pmatrix} \end{aligned} \end{array}$
Tidak ada komentar:
Posting Komentar
Informasi