Rumus Trigonometri Jumlah dan Selisih Dua Sudut

Perhatikanlah gambar berikut
Untuk mendapatkan rumus \cos \left ( \alpha \pm \beta \right ), perhatikan ilustrasi berikut ini

\begin{array}{|l|l|l|}\hline \multicolumn{3}{|c|}{\begin{aligned}\textrm{Diketahui} \: \: &\textrm{bahwa : Pada lingkaran di atas}\\ &\begin{cases} A & =(r,0) \\ B & =\left ( r\cos \alpha ,r\sin \alpha \right ) \\ C & =\left ( r\cos (\alpha +\beta ),r\sin (\alpha +\beta ) \right ) \\ D & =\left ( r\cos \beta ,-r\sin \beta \right ) \end{cases}\\ \end{aligned}}\\\hline \textrm{Jarak}&\multicolumn{2}{|c|}{OA=OB=OC=OD=r}\\\hline &(AC)^{2}&\begin{aligned}&(AC)^{2}\\ &=\left ( x_{C}-x_{A} \right )^{2}+\left ( y_{C}-y_{A} \right )^{2}\\ &=\left ( r\cos (\alpha +\beta )-r \right )^{2}+\left ( r\sin (\alpha +\beta )-0 \right )^{2}\\ &=\left ( r^{2}\cos ^{2}(\alpha +\beta )-2r^{2}\cos (\alpha +\beta )+r^{2} \right )+r^{2}\sin ^{2}(\alpha +\beta )\\ &=r^{2}\left ( \cos ^{2}(\alpha +\beta )+\sin ^{2}(\alpha +\beta ) \right )+r^{2}-2r^{2}\cos (\alpha +\beta )\\ &=r^{2}+r^{2}-2r^{2}\cos (\alpha +\beta )\\ &=2r^{2}-2r^{2}\cos (\alpha +\beta ) \end{aligned} \\\cline{2-3} (AC)^{2}=(BD)^{2}&(BD)^{2}&\begin{aligned}&(BD)^{2}\\ &=\left ( x_{D}-x_{B} \right )^{2}+\left ( y_{D}-y_{B} \right )^{2}\\ &=\left ( r\cos \alpha - r\cos \beta \right )^{2}+\left ( r\sin \alpha +r\sin \beta \right )^{2}\\ &=...\\ &=...\\ &=...\\ &=2r^{2}-2r^{2}\cos \alpha \cos \beta +2r^{2}\sin \alpha \sin \beta \end{aligned}\\\cline{2-3} &\multicolumn{2}{|c|}{\begin{aligned}(AC)^{2}&=(BD)^{2}\\ 2r^{2}-2r^{2}\cos (\alpha +\beta )&=2r^{2}-2r^{2}\cos \alpha \cos \beta +2r^{2}\sin \alpha \sin \beta\\ \cos (\alpha +\beta )&=\cos \alpha \cos \beta-\sin \alpha \sin \beta \end{aligned}}\\\hline \multicolumn{3}{|c|}{\begin{aligned}\textrm{Jadi},&\: \cos \left ( \alpha +\beta \right )=\cos \alpha \cos \beta -\sin \alpha \sin \beta \end{aligned}}\\\hline \end{array}

Sedangkan untuk rumus \sin \left ( \alpha \pm \beta \right )
kita uraikan dengan ilustrasi gambar berikut ini

Perhatikanlah untuk segi empat tali busurnya

\begin{aligned}AC\times BD&=BC\times AD+AB\times DC\\ 1\times BD&=\sin x\times \cos y+\cos x\times \sin y,\qquad\textnormal{diameter=1 satuan=AC=BE}\\ BD&=\sin x\times \cos y+\cos x\times \sin y,\qquad \textrm{karena}\: \: \angle BAD=\angle BED,\: \: \textrm{maka}\\ \sin (x+y)&=\sin x\times \cos y+\cos x\times \sin y ,\qquad \angle ABC=\angle ADC=\angle BDE=90^{0}\end{aligned}

Selanjutnya

\begin{array}{|c|c|}\hline \multicolumn{2}{|c|}{\textrm{untuk}\: \: \alpha \: \textrm{dan}\: \beta }\\\hline \alpha \neq \beta &\alpha = \beta \\\hline \begin{cases} \textrm{sinus} & (\alpha +\beta )=\sin \alpha \cos \beta +\cos \alpha \sin \beta \\ \textrm{sinus} & (\alpha -\beta )=\sin \alpha \cos \beta -\cos \alpha \sin \beta \\ \textrm{cosinus} & (\alpha +\beta )=\cos \alpha \cos \beta -\sin \alpha \sin \beta \\ \textrm{cosinus} & (\alpha -\beta )=\cos \alpha \cos \beta +\sin \alpha \sin \beta \\ \textrm{tangen} & (\alpha +\beta )=\displaystyle \frac{\tan \alpha +\tan \beta }{1-\tan \alpha \tan \beta } \\ \textrm{tangen} & (\alpha -\beta )=\displaystyle \frac{\tan \alpha -\tan \beta }{1+\tan \alpha \tan \beta } \end{cases}&\begin{aligned}\sin 2\alpha &=2\sin \alpha \cos \alpha \\ \cos 2\alpha &=\cos ^{2}\alpha -\sin ^{2}\alpha \\ &=\begin{cases} \cos 2\alpha &=2\cos ^{2}\alpha -1 \\ \cos 2\alpha &=1-2\sin ^{2}\alpha \end{cases}\\ \tan 2\alpha &=\displaystyle \frac{2\tan \alpha }{1-\tan ^{2}\alpha } \end{aligned}\\\hline \end{array}


Selanjutnya saat  \alpha =\beta   disebut sudut ganda

Ukuran Penyebaran Data

Perhatikanlah Tabel berikut

\begin{array}{|c|l|l|}\hline \textrm{No}&\qquad\qquad\quad\textrm{Istilah}&\qquad\qquad\textrm{Formula}\\\hline 1&\textrm{Jangkauan/\textit{range} (J)}&x_{maksimum}-x_{minimum}\\\hline 2&\textrm{Jangkauan kuartil/hamparan(H)}&Q_{3}-Q_{1}\\\hline 3.&\textrm{Simpangan kuartil}\: \left ( \textrm{Q}_{d} \right )\: \: atau&\\ &\textrm{Jangkauan semi antarkuartil}&\displaystyle \frac{1}{2}\left ( Q_{3}-Q_{1} \right )\\\hline 4&\textrm{Simpangan rata-rata (SR)}&\begin{cases} SR&=\displaystyle \frac{\sum_{i=1}^{n}\left | x_{i}-\bar{x} \right |}{n} \\ &atau \\ SR&=\displaystyle \frac{\sum_{i=1}^{n}f_{i}\left | x_{i}-\bar{x} \right |}{\sum_{i=1}^{n}f_{i}} \end{cases}\\\hline 5&\textrm{Ragam/Varians}\: \left ( \textrm{S}^{2} \right )&\begin{cases} S^{2}& =\displaystyle \frac{\sum_{i=1}^{n}\left ( x_{i}-\bar{x} \right )^{2}}{n} \\ & atau \\ S^{2}& =\displaystyle \frac{\sum_{i=1}^{n}f_{i}\left ( x_{i}-\bar{x} \right )^{2}}{\sum_{i=1}^{n}f_{i}} \end{cases}\\\hline 6&\textrm{Simpangan baku atau}&\begin{matrix} S=\sqrt{S^{2}}=\sqrt{\displaystyle \frac{\sum_{i=1}^{n}\left ( x_{i}-\bar{x} \right )^{2}}{n}}\\ atau \end{matrix} \\ &\textrm{Standar deviasi}&S=S^{2}=\sqrt{\displaystyle \frac{\sum_{i=1}^{n}f_{i}\left ( x_{i}-\bar{x} \right )^{2}}{\sum_{i=1}^{n}f_{i}}}\\\hline \end{array}


Ukuran Letak Data

.

Ukuran Data Memusat


A. Data Tunggal

\begin{array}{|ll|ll|}\hline \multicolumn{2}{|l|}{\textrm{Ukuran Pemusatan(Tendensi Sentral)}}&\multicolumn{2}{|l|}{\textrm{Ukuran Penyebaran(Dispersi)}}\\\hline \multicolumn{2}{|l|}{\textrm{Mean}\left ( \bar{x} \right )/\textrm{Rataan hitung}}&\multicolumn{2}{|l|}{\textrm{Jangkauan}\left ( J \right )/\textrm{Rentang}\left ( R \right )}\\ &\bar{x}=\displaystyle \frac{x_{1}+x_{2}+x_{3}+...+x_{n}}{n}&&J=R=x_{maks}-x_{min}\\\hline \multicolumn{2}{|l|}{\textrm{Median}\left ( M_{e} \right )/\textrm{Nilai datum tengah}}&\multicolumn{2}{|l|}{\textrm{Hamparan/Jangkauan antarkuartil}}\\ &\textrm{Data Ganjil}:\quad M_{e}=x_{\frac{n+1}{2}}&&H=Q_{3}-Q_{1}\\ &\textrm{Data Genap}:\quad M_{e}=\displaystyle \frac{1}{2}\left ( x_{\frac{n}{2}}+x_{\frac{n}{2}+1} \right )&&\\\hline \multicolumn{2}{|l|}{\textrm{Modus}\left (M_{o} \right )}&\multicolumn{2}{|l|}{\textrm{Simpangan kuartil}\left ( Q_{d} \right )}\\ &M_{o}:\: \textrm{Nilai datum dengan frekuensi terbesar} &&Q_{q}=\displaystyle \frac{1}{2}H\\\hline \multicolumn{2}{|l|}{\textrm{Kuartil}\left ( Q\right )}&\multicolumn{2}{|l|}{\textrm{Langkah}\left ( L \right )}\\ &\textrm{Data Ganjil}:\quad \begin{cases} Q_{1}= & x_{\frac{1}{4}(n+1)}\\ Q_{2}= & x_{\frac{2}{4}(n+1)}\\ Q_{3}= & x_{\frac{3}{4}(n+1)} \end{cases}&&L=\displaystyle \frac{3}{2}H\\ &\textrm{Data Genap}:\quad \begin{cases} Q_{1}= & x_{\frac{1}{4}n+\frac{1}{2}}\\ Q_{2}= & x_{\frac{2}{4}n+\frac{1}{2}}\\ Q_{3}= & x_{\frac{3}{4}n+\frac{1}{2}} \end{cases}&&\\\hline &&\multicolumn{2}{|l|}{\textrm{Pagar dalam dan Pagar luar}}\\\hline \end{array}

\begin{array}{|ll|ll|}\hline \multicolumn{2}{|l|}{\textrm{Ukuran Pemusatan(Tendensi Sentral)}}&\multicolumn{2}{|l|}{\textrm{Ukuran Penyebaran(Dispersi)}}\\\hline &&\multicolumn{2}{|l|}{\textrm{Pagar dalam dan Pagar luar}}\\ &&&\bullet \: \textrm{Pagar dalam}:Q_{1}-L\\ &&&\bullet \: \textrm{Pagar luar}:Q_{3}+L\\ &&&\begin{cases} \textrm{Data} & \textrm{normal } \\ &:Q_{1}-L\leq x_{i}\leq Q_{3}+L\\ \textrm{Data} & \textrm{tak normal(pencilan)}\\ &:\begin{cases} x_{i}<Q_{1}-L \\ x_{i}>Q_{3}+L \end{cases} \end{cases}\\\cline{3-4} &&\multicolumn{2}{|l|}{\textrm{Simpangan rata}\left ( SR \right )}\\ &&&SR=\displaystyle \frac{\sum \left | x_{i}-\bar{x} \right |}{n}\\\cline{3-4} &&\multicolumn{2}{|l|}{\textrm{Ragam/varians}\left ( s^{2} \right )}\\ &&&s^{2}=\displaystyle \frac{\sum \left ( x_{i}-\bar{x} \right )^{2}}{n}\\\cline{3-4} &&\multicolumn{2}{|l|}{\textrm{Simpangan baku}\left ( s=\sqrt{s^{2}} \right )}\\\hline \end{array}.

B. Data Berkelompok

\begin{array}{|l|l|l|}\hline \multicolumn{3}{|c|}{\textbf{Data Deskriptif Berkelompok}}\\\hline \textrm{Rataan Hitung}\left ( \bar{\textrm{x}} \right )&\textrm{Modus}\left ( \textrm{M}_{o} \right )&\textrm{Kuartil}\left ( \textrm{Q} \right )\\\hline \bar{\textrm{x}}=\bar{x}_{s}+\displaystyle \frac{\sum f_{i}.d_{i}}{\sum f_{i}}&\textrm{M}_{o}=t_{p}+\displaystyle p\left ( \frac{d_{1}}{d_{1}+d_{2}} \right )&\textrm{Q}_{i}=t_{p}+\displaystyle p\left ( \frac{\displaystyle \frac{i.n}{4}-\sum f_{i}}{f_{b}} \right )\\\hline \multicolumn{3}{|c|}{\textbf{Keterangan}}\\\hline \begin{aligned}\bar{x}_{s}=&\textrm{rataan sementara}\\ x_{i}=&\textrm{titik tengahinterval}\\ &\textrm{kelas ke}-i\\ d_{i}=&x_{i}-\bar{x}_{s}\\ f_{i}=&\textrm{frekuensi kelas ke}-i\\ &\\ &\\ &\\ &\\ &\end{aligned}&\begin{aligned}t_{p}=&\textrm{tepi bawah kelas modus}\\ p=&\textrm{panjang interval kelas}\\ d_{1}=&f_{0}-f_{-1}\\ d_{2}=&f_{0}-f_{+1}\\ f_{0}=&\textrm{frekuensi kelas modus}\\ f_{-1}=&\textrm{frekuensi sebelum kelas modus}\\ f_{+1}=&\textrm{frekuensi setelah kelas modus}\\ &\\ &\\ & \end{aligned}&\begin{aligned}tp=&\textrm{tepi bawah kuartil ke}-i\\ p=&\textrm{panjang interval kelas}\\ n=&\textrm{banyaknya data}\\ \sum f_{i}=&\textrm{jumlah semua frekuensi}\\ &\textrm{sebelum kelas kurtil ke}-i\\ f_{q}=&\textrm{frekuensi kelas kuartil ke}-i\\ Q_{i}=&\textrm{kuartil ke}-i\\ Q_{1}=&\textrm{kuartil bawah}\\ Q_{2}=&\textrm{kuatil tengah/median}\\ Q_{3}=&\textrm{kuatil atas} \end{aligned}\\\hline \end{array}

\LARGE\fbox{\fbox{{CONTOH SOAL}}}



\begin{array}{|c|c|}\hline \textrm{Daftar distribusi data tunggal}&\textrm{Daftar distribusi data berkelompok}\\\hline n\geq 30&n\geq 30\\\hline \begin{aligned}2.\: \: \textrm{Sebagai}&\: \textrm{misal data jumlah anak}\\ \textrm{dari}\: &\: \textrm{30 karyawan sebuah}\\ \textrm{peru}&\textrm{sahaan}\\ 3&\, 2\, 0\, 1\, 4\, 2\, 2\, 2\, 1\, 2\\ 3&\, 0\, 3\, 2\, 1\, 1\, 2\, 1\, 2\, 2\\ 2&\, 1\, 2\, 2\, 0\, 3\, 1\, 1\, \, 2\, 3 \end{aligned}&\begin{aligned}\textrm{Langkah}&-\textrm{langkah membuat daftar}\\ \textrm{dengan}\: &\textrm{mentukan hal-hal berikut}\\ 1.\: &Jangkauan(J)=x_{maks}-x_{min}\\ 2.\: &\textit{Banyak kelas}(k)=1+3,3\times \log n\\ 3.\: &\textit{Panjang kelas}(c)=\displaystyle \frac{J}{k}\\ 4.\: &\textit{Batas kelas pertama}=\textit{datum terkecil} \end{aligned}\\\hline \begin{array}{|c|c|}\hline \textrm{Juml anak}&\textrm{Frekuensi}\\\hline 0&3\\ 1&8\\ 2&13\\ 3&5\\ 4&1\\\hline \textrm{Jumlah}&30\\\hline \end{array}&\begin{aligned}3.\: \: \textrm{Buat}&\textrm{lah Daftar distribusi frekuensi}\\ &\textrm{untuk data berikut}\\ &79\, 68\, 60\, 73\, 62\, 78\, 56\, 64\, 68\, 53\, 72\, 67\, 64\, 62\\ &58\, 53\, 52\, 72\, 59\, 74\, 52\, 71\, 62\, 51\, 70\, 60\, 72\, 68\\ &74\, 67\, 70\, 70\, 57\, 55\, 62\, 52\, 61\, 77\, 63\, 63\\ & \end{aligned}\\\hline \end{array}











Sumber Referensi

  1. Johanes, Kastolan, dan Sulasim. 2004. Kompetensi Matematika SMA Kelas 2 Semester 1 Program Ilmu Sosial Kurikulum Berbasis Kompetensi 2004. Jakarta: Yudistira.
  2. Kanginan, Marthen, Yuza Terzalgi. 2014. Matematikauntuk SMA-SMK/SMK Kelas XI. Bandung: SEWU.
  3. Sobirin. 2006. Kompas Matematika: Strategi Praktis Menguasai Tes Matematika SMA Kelas 2 IPA. Jakarta: Kawan Pustaka.
  4. Tampomas, Husein. 1999. Seribu Pena  Matematika SMU Jilid 2 kelas 2. Jakarta: Erlangga.
  5. Wirodikromo, Sartono. 2007. Matematika untuk SMA Kelas XI. Jakarta: Erlangga.
STATISTIKA (KELAS XII WAJIB K13)

A. Pendahuluan Statistika



Sebagai tambahan penjelasan




B. Pengumpulan Data

Pengumpulan data dapat dilakukan dengan metode wawancara, pengamatan langsung(observasi) dan bisa juga dengan menggunakan angket.
Setiap keterangan yang diperoleh dalam pengamatan dinamakan datum, dan dari sekumpulan datum inilah nantinya yang disebut data.


C. Penyajian Data

Dalam statika data statistik dapat disajikan dalam berbagai bentuk, mmenyesuaikan jenisnya data. Data statistik dapat berupa daftar bilangan yang memiliki kondisi tertentu sebagai misal berupa data tunggal. Selain data statistik dapat dinyatakan dalam daftar bilangan, data juga bisa dinyatakan dalam bentuk tabel/daftar distribusi frekuensi, atupun diagram.


\begin{array}{|l|l|}\hline \multicolumn{2}{|c|}{\textrm{Penyajian Data}}\\\hline \textrm{Bentuk Diagram}&\textrm{BentukDaftar Distribusi Frekuensi}\\\hline \begin{aligned}\blacklozenge &\: \textrm{Diagram garis}\\ \blacklozenge &\: \textrm{Diagram batang daun}\\ \blacklozenge &\: \textrm{Diagram kotak garis}\\ &\\ & \end{aligned}&\begin{aligned}\blacklozenge &\: \textrm{Daftar distribusi data tunggal}\\ \blacklozenge &\: \textrm{Daftar distribusi frekuensi data berkelompok}\\ \blacklozenge &\: \textrm{Daftar distribusi frekuensi relatif}\\ \blacklozenge &\: \textrm{Daftar distribusi kumulatif}\\ \blacklozenge &\: \textrm{Histogram, poligon frekuensi, dan ogif }\end{aligned}\\\hline \end{array}.

Selanjutnya untuk lebih lengkapnya silahkan baca di sini

Eksponen dan Logaritma

A. Sifat-Sifat Eksponen dan Logaritma

\begin{array}{|l|l|}\hline \multicolumn{2}{|c|}{\textrm{Sifat yang berlaku pada}}\\\hline \textrm{Eksponens}&\textrm{Logaritma}\\\hline \displaystyle a^{n}=\underset{n\: \: faktor}{\underbrace{a\times a\times a\times \cdots \times a}}&^{a}\log b=c\: \Rightarrow \: a^{c}=b\\\hline \bullet \quad a^{p}\times a^{q}=a^{p+q}&\bullet \quad ^{a}\log x+\: ^{a}\log y=\: ^{a}\log xy\\\hline \bullet \quad a^{p}: a^{q}=a^{p-q}&\bullet \quad ^{a}\log x-\: ^{a}\log y=\: ^{a}\log \displaystyle \frac{x}{y}\\\hline \bullet \quad \left ( a^{p} \right )^{q}=a^{p.q}&\bullet \quad ^{a}\log x=\: \displaystyle \frac{^{m}\log x}{^{m}\log a}\\\hline \bullet \quad \displaystyle \sqrt[q]{a^{p}}=\displaystyle a^{ \left (\frac{p}{q} \right )}&\bullet \quad ^{a}\log b\: \times \: ^{b}\log c=\: ^{a}\log c\\\hline \bullet \quad \left ( a\times b \right )^{p}=a^{p}\: \times \: b^{p}&\bullet \quad ^{a^{m}}\log b^{n}=\displaystyle \frac{n}{m}\times \: ^{a}\log b\\\hline \bullet \quad \left ( \displaystyle \frac{a}{b} \right )^{p}=\displaystyle \frac{\displaystyle a^{p}}{\displaystyle b^{p}}&\bullet \quad \displaystyle a^{\: {^{a}}\log b}=b\\\hline \bullet \quad a^{-p}=\displaystyle \frac{1}{\displaystyle a^{p}}&\bullet \quad ^{a}\log b=\displaystyle \frac{1}{^{b}\log a}\\\hline \bullet \quad a^{0}=1,\: \: \: \: \: a\neq 0&\bullet \quad ^{a}\log 1=0\\\hline \bullet \quad a^{1}=1&\bullet \quad ^a\log a=1\\\hline \begin{cases} a,b\: \in \mathbb{R} \\ p,q\: \in \mathbb{Q} \end{cases}&\begin{cases} a\neq 0 & a>0\: \: (\textrm{bilangan pokok}) \\ x,y>0 & (\textrm{numerus}) \end{cases}\\\hline \end{array}

B. Persamaan Eksponen dan Logaritma

B.1 Persamaan Eksponen

\begin{array}{|l|l|l|}\hline \textrm{No}&\textrm{Bentuk}&\textrm{Syarat}\\\hline 1.&a^{f(x)}=1&a\neq 0,\quad \textrm{maka}\: \: f(x)=0\\\hline 2.&a^{f(x)}=a^{p}&a>0,\: \: a\neq 1,\quad \textrm{maka}\: \: f(x)=p\\\hline 3.&a^{f(x)}=a^{g(x)}&a>0,\: \: a\neq 1,\quad \textrm{maka}\: \: f(x)=g(x)\\\hline 4.&a^{f(x)}=b^{f(x)}&a\neq 0,\: b\neq 0\: ,\quad \textrm{maka}\: \: f(x)=0\\\hline 5.&f(x)^{g(x)}=1&\begin{cases} f(x)=1 & \\ g(x)=0, & \textrm{jika}\: \: f(x)\neq 0 \\ f(x)=-1, & \textrm{jika}\: \: g(x)=\: \textrm{genap} \end{cases}\\\hline 6.&f(x)^{g(x)}=f(x)^{h(x)}&\begin{cases} (i).\quad g(x)=h(x)& \\ (ii).\quad f(x)=1& \\ (iii).\quad f(x)=0,&g(x)>0,\: \: h(x)>0 \\ (iv).\quad f(x)=-1,&g(x)\: \textrm{dan}\: h(x)\: \: \\ &\textrm{keduanya ganjil atau genap} \end{cases}\\\hline 7.&g(x)^{f(x)}=h(x)^{f(x)}&\begin{cases} (i).\quad g(x) =h(x)& \\ (ii).\quad f(x)=0, & g(x)\neq 0,\: h(x)\neq 0 \end{cases}\\\hline 8.&A\left ( a^{f(x)} \right )^{2}+B\left ( a^{f(x)} \right )+C=0&a>0,\: \: a\neq 1\\\hline \end{array}

B.2 Persamaan Logaritma

\begin{array}{|l|l|l|}\hline \textrm{No}&\textrm{Bentuk}&\textrm{Syarat}\\\hline 1.&^a\log f(x)=0&f(x)>0,a>0,a\neq 0,\quad \textrm{maka}\: \: f(x)=1\\\hline 2.&^a\log f(x)=\: ^a\log p&a>0, a\neq 1, f(x)>0,p>0\quad \textrm{maka}\: \: f(x)=p\\\hline 3.&^a\log {f(x)}=\: ^a\log {g(x)}&a>0, a\neq 1,f(x)>,g(x)>0 \quad \textrm{maka}\: \: f(x)=g(x)\\\hline 4.&^a\log {f(x)}=\: ^b\log {f(x)}&a>0,b>0,a\neq 1, b\neq 1,f(x)>0,g(x)>0\\ && \textrm{maka}\: \: f(x)=0\\\hline 5.&^{h(x)}\log f(x)=\: ^{h(x)}\log g(x)&h(x)>0,h(x)\neq 1,f(x)>0,g(x)>0\\ && \textrm{maka}\: \: f(x)=g(x)\\\hline 6.&A(^a\log ^{2}f(x))+B(^a\log f(x))+C=0&\textrm{arahkan ke persamaan kuadrat}\\\hline 7.&a^{f(x)}=b^{g(x)}&\textrm{gunakan aturan logaritma}\\\hline \end{array}

C. Pertidaksamaan Eksponen dan Logaritma

C. 1 Pertidaksamaan Eksponen

\begin{array}{|l|l|}\hline a>1&0<a<1\\\hline a^{f(x)}\leq a^{g(x)}\Rightarrow f(x)\leq g(x)&a^{f(x)}\leq a^{g(x)}\Rightarrow f(x)\geq g(x)\\\hline a^{f(x)}< a^{g(x)}\Rightarrow f(x)< g(x)&a^{f(x)}< a^{g(x)}\Rightarrow f(x)> g(x)\\\hline a^{f(x)}\geq a^{g(x)}\Rightarrow f(x)\geq g(x)&a^{f(x)}\geq a^{g(x)}\Rightarrow f(x)\leq g(x)\\\hline a^{f(x)}> a^{g(x)}\Rightarrow f(x)> g(x)&a^{f(x)}> a^{g(x)}\Rightarrow f(x)< g(x)\\\hline \end{array}

C. 2 Pertidaksamaan Logaritma  \left (f(x)>0\: \: \textrm{dan}\: \: g(x)>0 \right )

\begin{array}{|l|l|}\hline a>1&0<a<1\\\hline ^a\log f(x)\leq \: ^a\log g(x)\Rightarrow f(x)\leq g(x)&^a\log f(x)\leq \: ^a\log g(x)\Rightarrow f(x)\geq g(x)\\\hline ^a\log f(x)< \: ^a\log g(x)\Rightarrow f(x)< g(x)&^a\log f(x)< \: ^a\log g(x)\Rightarrow f(x)> g(x)\\\hline ^a\log f(x)\geq \: ^a\log g(x)\Rightarrow f(x)\geq g(x)&^a\log f(x)\geq \: ^a\log g(x)\Rightarrow f(x)\leq g(x)\\\hline ^a\log f(x)> \: ^a\log g(x)\Rightarrow f(x)> g(x)&^a\log f(x)> \: ^a\log g(x)\Rightarrow f(x)< g(x)\\\hline \end{array}.

D. Grafik Fungsi Eksponen dan Logaritma

D.1 Grafik fungsi Eksponen



D.2 Grafik fungsi Logaritma


\LARGE{\fbox{\LARGE{\fbox{CONTOH SOAL}}}}.

\begin{array}{ll}\\ \fbox{1}.&\textrm{Tentukanlah nilai dari bilangan-bilangan berikut ini}! \end{array}\\ \begin{array}{llllllll}\\ .\quad\quad &a.&27^{\frac{1}{3}}&k.&\left ( \displaystyle \frac{2^{3}.3^{-2}}{2^{-5}.3} \right )^{\displaystyle \frac{1}{2}}&u.&\displaystyle \frac{\left ( a^{2}.b^{-1} \right )^{\frac{1}{2}}\sqrt{a^{6}.b^{\frac{5}{3}}.c^{-2}}}{\left ( a^{3}.b^{-5}.c^{-3} \right )^{\frac{1}{3}}}\\ &b.&32^{^{\frac{2}{5}}}&l.&\displaystyle \frac{\sqrt{2}.\sqrt[3]{8}}{(2)^{\frac{1}{3}}.\sqrt[4]{16^{2}}}&v.&\displaystyle \frac{x^{2}.y^{7}}{x^{3}.y^{5}}\\ &c.&\left ( \displaystyle \frac{9}{16} \right )^{\displaystyle \frac{3}{2}}&m.&\left ( \displaystyle \frac{\sqrt{2}.2\sqrt{6}}{\sqrt{3}.\sqrt[3]{9}} \right )^{\displaystyle \frac{1}{2}}&w.&\left ( \displaystyle \frac{2x^{3}}{y^{2}}:\frac{4x^{6}}{4y^{5}} \right ).\displaystyle \frac{3x^{2}-2y}{3y}\\ &d.&\left ( \displaystyle \frac{1}{125} \right )^{-\frac{1}{3}}&n.&\displaystyle \frac{2.3^{-\frac{1}{2}}-2+3.2^{-\frac{1}{2}}}{2.3^{-\frac{1}{2}}-3.2^{-\frac{1}{2}}}&x.&\left (\sqrt[3]{x^{2}.yz^{3}} \right ).x^{-1}.y^{-2}\\ &e.&\left ( \displaystyle \frac{2}{3} \right )^{\displaystyle \frac{2}{3}}.\left ( \displaystyle \frac{3}{2} \right )^{-\displaystyle \frac{1}{3}}&o.&-3\sqrt{6}+4\sqrt{3}-2\sqrt{81}&y.&\displaystyle \frac{\sqrt{x}.\sqrt{x^{2}y^{3}}.\sqrt{xy^{2}}}{\sqrt[4]{x}.\sqrt[3]{y}}\\ &f.&\left ( \displaystyle \frac{1}{5^{3}} \right )^{-1}.\left ( \displaystyle \frac{1}{5^{2}} \right )^{2}&p.&\sqrt{250}-\sqrt{50}+15\sqrt{2}&z.&\displaystyle \frac{\left ( x^{2} \right )^{3}}{x^{4}}:\left ( \frac{x^{3}}{\left ( x^{3} \right )^{2}} \right )^{-2} \end{array}
\begin{array}{llllllll}\\ .\quad\quad&g.&\displaystyle \frac{\sqrt{3}.\sqrt{15}}{\sqrt{5}}\quad\qquad \: \: &q.&\sqrt[2]{75}-\sqrt[4]{27}+\sqrt[3]{128}\\ &h.&\displaystyle \frac{2\sqrt{3}.\sqrt{24}}{\sqrt{7}.3\sqrt{14}}&r.&\displaystyle \frac{5\sqrt{5}+2\sqrt{5}}{5-3\sqrt{5}}\\ &i&\displaystyle \frac{\sqrt{5}.\sqrt[2]{2^{3}}}{2.\sqrt[3]{3}}&s.&\sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{\cdots }}}}}}\\ &j.&\displaystyle \frac{\sqrt{3}.\sqrt[3]{2}}{\left ( \frac{4}{9} \right )^{3}.\left ( \frac{2}{3} \right )^{-2}}&t.&\left ( 4^{\frac{1}{2}} \right )^{\frac{1}{2}}\left ( 2^{-2} \right )^{-2}.\sqrt[3]{0,125}.\left ( 0,25 \right ).\displaystyle \frac{1}{2}\sqrt{\frac{1}{2}} \end{array}

Pembahasan:

\begin{array}{|l|l|l|l|}\hline \begin{aligned}a.\quad 27^{\frac{1}{3}}&=\left ( 3^{3} \right )^{\frac{1}{3}}\\ &=3\\ &\\ & \end{aligned}&\begin{aligned}b.\quad 32^{\frac{2}{5}}&=\left ( 2^{5} \right )^{\frac{2}{5}}\\ &=2^{2}=4\\ &\\ & \end{aligned}&\begin{aligned}c.\quad \left ( \displaystyle \frac{9}{16} \right )^{\frac{3}{2}}&=\left (\left ( \displaystyle \frac{3}{4} \right )^{2} \right )^{\frac{3}{2}}\\ &=\left ( \displaystyle \frac{3}{4} \right )^{3}=\frac{27}{64} \end{aligned}&\begin{aligned}d.\quad \left ( \displaystyle \frac{1}{125} \right )^{-\frac{1}{3}}&=\left ( 5^{-3} \right )^{-\frac{1}{3}}\\ &=5\\ & \end{aligned}\\\hline \begin{aligned}e.\quad &\left ( \frac{2}{3} \right )^{\frac{2}{3}}.\left ( \frac{3}{2} \right )^{-\frac{1}{3}}\\ &=\left ( \frac{2}{3} \right )^{\frac{2}{3}}.\left ( \frac{2}{3} \right )^{\frac{1}{3}}\\ &=\left ( \frac{2}{3} \right )^{\frac{2}{3}+\frac{1}{3}}\\ &=\frac{2}{3} \end{aligned}&\begin{aligned}h.\quad &\displaystyle \frac{2\sqrt{3}.\sqrt{24}}{\sqrt{7}.3\sqrt{14}}\\ &=\displaystyle \frac{2\sqrt{3}.\sqrt{4}.\sqrt{2}.\sqrt{3}}{\sqrt{7}.3.\sqrt{2}.\sqrt{7}}\\ &=\frac{4.\sqrt{2}.3}{7.\sqrt{2}.3}\\ &=\frac{4}{7} \end{aligned}&\begin{aligned}u.\quad &\displaystyle \frac{\left ( a^{2}b^{-1} \right )^{\frac{1}{2}}.\sqrt{a^{6}.b^{\frac{5}{3}}.c^{-2}}}{\left ( a^{3} \right )^{\frac{1}{3}}}\\ &=\displaystyle \frac{a.b^{-\frac{1}{2}}.a^{\frac{6}{2}}.b^{\frac{1}{2}.\frac{5}{3}}.c^{-\frac{2}{2}}}{a^{\frac{3}{3}}.b^{-\frac{5}{3}}.c^{-\frac{3}{3}}}\\ &=a^{3}.b^{-\frac{1}{2}+\frac{5}{6}+\frac{5}{3}}\\ &=a^{3}.b^{\frac{-3+5+10}{6}}=a^{3}.b^{2} \end{aligned}&\begin{aligned}&\textrm{Untuk Soal yang belum}\\ &\textrm{dibahas silahkan}\\ &\textrm{dikerjakan sendiri}\\ &\textrm{sebagai latihan} \end{aligned}\\\hline \end{array}

\begin{array}{ll}\\ \fbox{2}.&\textrm{Tentukanlah himpunan penyelesaian (HP) dari}\\ &\textrm{a}.\quad 3^{2x-1}=1\\ &\textrm{b}.\quad 4^{x^{2}+3x-10}=1\\ &\textrm{c}.\quad 5^{3x^{2}+2x-1}=1\\ &\textrm{d}.\quad (9)^{2x+\frac{1}{2}}.\left ( \displaystyle \frac{1}{27} \right )^{3x^{2}+2}=1\\ &\textrm{e}.\quad \left ( \displaystyle \frac{1}{2} \right )^{2x-3}.(8)^{3x+1}=1\\ &\textrm{f}.\quad \displaystyle \frac{\sqrt[3]{\left ( 0,0008 \right )^{7-2x}}}{\left ( 0,2 \right )^{-4x+5}}=1\: \: ...(\textbf{SPMB 2005})\end{array}

Pembahasan:

\begin{array}{|l|l|l|}\hline \begin{aligned}a.\quad 3^{2x-1}&=1\\ 3^{2x-1}&=3^{0}\\ 2x-1&=0\\ 2x&=1\\ x&=\displaystyle \frac{1}{2}\\ \textrm{HP}=&\left \{ \displaystyle \frac{1}{2} \right \}\\ &\\ &\\ & \end{aligned}&\begin{aligned}e.\quad \left ( \displaystyle \frac{1}{2} \right )^{2x-3}.(8)^{3x+1}&=1\\ (2^{3-2x}).(2^{3})^{3x+1}&=2^{0}\\ 2^{3-2x+9x+3}&=2^{0}\\ 7x+6&=0\\ 7x&=-6\\ x&=-\displaystyle \frac{6}{7}\\ \textrm{HP}=\left \{ -\displaystyle \frac{6}{7} \right \}&\\ & \end{aligned}&\begin{aligned}f.\quad \displaystyle \frac{\sqrt[3]{\left ( 0,0008 \right )^{7-2x}}}{\left ( 0,2 \right )^{-4x+5}}&=1\: \: ...(\textbf{SPMB 2005})\\ \displaystyle \frac{((0,2)^{3})^{\frac{7-2x}{3}}}{(0,2)^{-4x+5}}&=(0,2)^{0}\\ (0,2)^{7-2x-(-4x+5)}&=(0,2)^{0}\\ 7-2x+4x-5&=0\\ 2x+2&=0\\ 2&=-2\\ x&=-1\\ \textrm{HP}=\left \{ -1 \right \}& \end{aligned}\\\hline \end{array}

\begin{array}{ll}\\ \fbox{3}.&\textrm{Tentukanlah himpunan penyelesaian (HP) dari}\\ &\textrm{a}.\quad 3^{2x-5}=3^{5}\\ &\textrm{b}.\quad 2^{2x+3}.\left (\displaystyle \frac{1}{8} \right )^{x-3}=\displaystyle \frac{1}{64}\\ &\textrm{c}.\quad (2)^{5x^{2}-3x}.\left ( \displaystyle \frac{1}{32} \right )^{5}=32^{5}\\ &\textrm{d}.\quad \left ( \displaystyle \frac{1}{9} \right )^{-x^{2}}.\left ( 3^{2} \right )^{3x-3}=\displaystyle 9^{3^{2}}\\ &\textrm{e}.\quad (4)^{-2x^{2}+3x}.\left ( \displaystyle \frac{1}{4} \right )^{3}=2^{-2}.\left ( \displaystyle \frac{1}{8} \right )^{-2}\\ &\textrm{f}.\quad \displaystyle \frac{27}{3^{2x-1}}=81^{-0,125}\: \: ...(\textbf{SPMB 2004})\end{array}
Pembahasan:
\begin{array}{|l|l|}\hline \begin{aligned}a.\quad 3^{2x-5}&=3^{5}\\ a^{f(x)}&=a^{p}\\ f(x)&=p\\ 2x-5&=5\\ 2x&=10\\ x&=5\\ \textrm{HP}=&\left \{ 5 \right \}\\ &\\ &\\ &\\ &\\ &\end{aligned}&\begin{aligned}f.\quad \displaystyle \frac{27}{3^{2x-1}}&=81^{-0,125}\cdots (\textbf{SPMB 2004})\\ \displaystyle \frac{3^{3}}{3^{2x-1}}&=(3^{4})^{-\frac{1}{8}}\\ 3^{3-(2x-1)}&=3^{-\frac{4}{8}}\\ 3-(2x-1)&=-\frac{4}{8}\\ 4-2x&=-\frac{1}{2}\\ 8-4x&=-1\\ -4x&=-1-8\\ x&=\frac{9}{4}\\ \textrm{HP}=&\left \{ \frac{9}{4} \right \}\end{aligned}\\\hline \end{array}
\begin{array}{ll}\\ \fbox{4}.&\textrm{Tentukanlah himpunan penyelesaian (HP) dari}\\ &\textrm{a}.\quad \sqrt{3^{2x+1}}=9^{x-2}\\ &\textrm{b}.\quad \left ( \displaystyle \frac{1}{3} \right )^{2x-3}.3^{x+5}=\left ( \displaystyle \frac{1}{27} \right )^{2x-10}\\ &\textrm{c}.\quad (125)^{(x^{2}-3x-4)}=(5)^{(x^{2}-2x-3)}\\ &\textrm{d}.\quad (2^{2})^{\displaystyle \sqrt{x^{3}+2x^{2}-3x-6}}=\left ( \displaystyle \frac{1}{2} \right )^{-\displaystyle \sqrt{4x^{2}+4x-8}}\\ &\textrm{e}.\quad (4)^{(x^{2}+2x-1)}.\left ( \displaystyle \frac{1}{8} \right )^{3x-4}=\left ( \displaystyle \frac{1}{2} \right )^{2x}\\ &\textrm{f}.\quad (\sqrt{2})^{4x^{2}-8x+12}.\left ( \sqrt[3]{8} \right )^{3x+5}=\left ( \displaystyle \frac{1}{4} \right )^{4x-3}.(2)^{6x+5}\\ &\textrm{g}.\quad 9^{x^{2}-3x+1}+9^{-3x+x^{2}}=20-10\left ( 3^{x^{2}-3x} \right )\: \: ...(\textbf{SPMB 2004})\end{array}
Pembahasan:
\begin{array}{|l|l|l|}\hline \begin{aligned}a.\quad \sqrt{3^{2x+1}}&=9^{x-2}\\ a^{f(x)}&=a^{g(x)}\\ f(x)&=g(x)\\ \displaystyle (3)^{\frac{2x+1}{2}}&=(3^{2})^{x-2}\\ \displaystyle \frac{2x+1}{2}&=2(x-2)\\ 2x+1&=4x-8\\ -2x&=-9\\ x&=\displaystyle \frac{9}{2}\\ \textrm{HP}=&\left \{ \frac{9}{2} \right \} \end{aligned}&\begin{aligned}b.\quad \left ( \displaystyle \frac{1}{3} \right )^{2x-3}.3^{x+5}&=\left ( \displaystyle \frac{1}{27} \right )^{2x-10}\\ (3^{-1})^{(2x-3)}.3^{x+5}&=(3^{-3})^{(2x-10)}\\ 3^{(-2x+3)+(x+5)}&=3^{10-2x}\\ -2x+3+x+5&=10-2x\\ x&=10-8\\ x&=2\\ \textrm{HP}=\left \{ 2 \right \}&\\ &\\ &\\ & \end{aligned}&\begin{aligned}c.\quad (125)^{x^{2}-3x-4}&=(5)^{x^{2}-2x-3}\\ (5^{3})^{x^{2}-3x-4}&=(5)^{x^{2}-2x-3}\\ 3x^{2}-9x-12&=x^{2}-2x-3\\ 2x^{2}-7x-9&=0\\ (x+1)(2x-9)&=0\\ x=-1\: \: \textrm{V}\: \: x=\frac{9}{2}\\ \textrm{HP}=&\left \{ -1,\frac{9}{2} \right \}\\ &\\ &\\ & \end{aligned}\\\hline \multicolumn{3}{|l|}{\begin{aligned}g.\qquad\quad\quad\quad 9^{x^{2}-3x+1}+9^{-3x+x^{2}}&=20-10\left ( 3^{x^{2}-3x} \right )\\ \textrm{misalkan}\: \: 3^{x^{2}-3x}&=p\\ 9^{x^{2}-3x}.9+9^{x^{2}-3x}&=20-10\left ( 3^{x^{2}-3x} \right )\\ 9.\left ( 3^{2.(x^{2}-3x)} \right )+\left ( 3^{2.(x^{2}-3x)} \right )&=20-10\left ( 3^{x^{2}-3x} \right )\\ 10.\left ( 3^{x^{2}-3x} \right )^{2}&=20-10\left ( 3^{x^{2}-3x} \right )\\ 10p^{2}&=20-10p\\ p^{2}&=2-p\\ p^{2}+p-2&=0\\ (p+2)(p-1)&=0\\ p=-2\: (\textrm{tdk mungkin})\: \: \textrm{V}\: \: p=1&\\ \textrm{sehingga}\quad p=3^{x^{2}-3x}&=1\\ 3^{x^{2}-3x}&=3^{0}\\ x^{2}-3x&=0\\ x(x-3)&=0\\ x=1\: \: \textrm{V}\: \: x&=3\\ \textrm{HP}=&\left \{ 1,3 \right \} \end{aligned}}\\\hline \end{array}
Sumber Referensi

  1. Kuntarti, Sulistiyono dan Sri Kurnianingsih. 2005. Matematika untuk SMA dan MA Kelas XII Program Ilmu Alam. Jakarta: Gelora Aksara Pratama.
  2. Kuntarti, Sulistiyono dan Sri Kurnianingsih. 2007. Matematika  SMA dan MA untuk Kelas XII Semester 2 Program IPA Standar Isi 2006. Jakarta: esis.
  3. Soetiyono, Kamta Agus Sajaka, Sigit suprijanto, Marwanta, Suwarsini Murniati, dan Herynugroho. 2007. Matematika Interaktif 3B Sekolah Menengah Atas Kelas XII Program Ilmu Pengetahuan Alam. Jakarta: Yudistira.
  4. Tim IGMP Matematika SMA. ….. . Tabloid Matematika Kurikulum 2006. Semarang: CV. Sarana Ilmu.
  5. Tung, Khoe Yao. 2012. Pintar Matematika SMA Kelas XII IPA Untuk Olimpiade dan Pengayaan Pelajaran. Yogyakarta: ANDI.