$\begin{array}{ll}\\ 16.&\textrm{Terdapat dua bilangan bulat positif yang akan}\\ &\textrm{disusun di antara 3 dan 9 sehingga tiga bilangan}\\ &\textrm{pertama membentuk barisan geometri, sedangkan}\\ &\textrm{tiga barisan terakhir membentuk barisan aritmetika}.\\ &\textrm{Jumlah dari dua bilangan tersebut adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&13\displaystyle \frac{1}{2}&&&&&\textrm{D}.&\displaystyle 10\\ \textrm{B}.&\color{red}\displaystyle 11\frac{1}{4}&&\textrm{C}.&\displaystyle 10\frac{1}{2}&&\textrm{E}.&9\displaystyle \frac{1}{2} \end{array}\\\\ &\textbf{Jawab}:\textbf{B}\\ &\begin{aligned}&\textrm{Misalkan bilangan yang dimaksud adalah}:3,x,y,9\\ &\textrm{maka}\\ &\bullet \quad\textrm{Membentuk barisan geometri}:3,x,y\Rightarrow x^{2}=3y\\ &\bullet \quad\textrm{Membentuk barisan aritmetika}:x,y,9\Rightarrow 2y=x+9\\ &\textrm{Selanjutnya}\\ &x^{2}=3y=3\left ( \displaystyle \frac{x+9}{2} \right )\Leftrightarrow 2x^{2}-3x-27=0\\ &\Leftrightarrow x_{1,2}=\displaystyle \frac{3\pm \sqrt{3^{2}+4.2.27}}{2.2}=\displaystyle \frac{3\pm 15}{4}\\ &\textrm{Pilih}\: \: x=\displaystyle \frac{3+15}{4}=\frac{9}{2}\Rightarrow y=\displaystyle \frac{\displaystyle \frac{9}{2}+9}{2}=\frac{27}{4},\\ &\textrm{maka nilai}\: \: x+y=\displaystyle \frac{9}{2}+\frac{27}{4}=\frac{18+27}{4}=\frac{45}{4}=\color{red}11\displaystyle \frac{1}{4} \end{aligned} \end{array}$
Contoh Soal 3 Persamaan Kuadrat (Kelas X/Fase E Semester Genap) Tahun 2024
$\begin{array}{ll}\\ 11.&\textrm{Jumlah kuadrat dari penyelesaian persamaan}\\ &\textrm{kuadrat}\: \: x^{2}+2hx=3\: \: \textrm{adalah 10. Nilai mutlak}\\ &\textrm{dari}\: \: h\: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\color{red}\displaystyle -1&&&&&\textrm{D}.&\displaystyle 2\\ \textrm{B}.&\displaystyle \displaystyle \frac{1}{2}&&\textrm{C}.&\displaystyle \displaystyle \frac{3}{2}&&\textrm{E}.&\textrm{Salah semua} \end{array}\\\\ &\textbf{Jawab}:\textbf{A}\\ &\textrm{Misalkan penyelesaian dari PK}:x^{2}+2hx-3=0\\ &\alpha \: \: \textrm{dan}\: \: \beta ,\: \textrm{maka}\: \: \alpha ^{2}+\beta ^{2}=10\Leftrightarrow (\alpha +\beta )^{2}-2\alpha \beta =10\\ &\Leftrightarrow \left ( -\displaystyle \frac{b}{a}\right )^{2}-2\left ( \displaystyle \frac{c}{a} \right )=10\Leftrightarrow (-2h)^{2}-2(-3)=10\\ &\Leftrightarrow 4h^{2}=10-6=4\Leftrightarrow h^{2}=1\Leftrightarrow \left | h \right |=1\Leftrightarrow h=\pm 1\\ &\textrm{Jadi, nilai yang memenuhi adalah}\: \: \color{red}h=-1 \end{array}$.
$\begin{array}{ll}\\ 12.&\textrm{Jika}\: \: x^{2}+2\left | x \right |-8=0\: ,\: \textrm{maka nilai}\: \: x\\ &\textrm{yang memenuhi adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle -4&&&&&\textrm{D}.&\displaystyle 0\\ \textrm{B}.&\color{red}\displaystyle -2&&\textrm{C}.&\displaystyle -1&&\textrm{E}.&4 \end{array}\\\\ &\textbf{Jawab}:\textbf{B}\\ &x^{2}+2\left | x \right |-8=0\Leftrightarrow \left ( \left | x \right |+4 \right )\left ( \left | x \right |-2 \right )=0\\ &\Leftrightarrow \left | x \right |=-4\: (\textrm{bukan solusi})\: \: \textrm{atau}\: \: \left | x \right |=2\: (\textrm{solusi})\\ &\textrm{Pilih}\: \: \left | x \right |=2\Rightarrow x=\color{red}\pm 2 \end{array}$.
$\begin{array}{ll}\\ 13.&\textrm{Jika}\: \: \alpha \: \: \textrm{dan}\: \: \beta \: \: \textrm{akar-akar dari persamaan}\\ &x^{2}-2x=\left | x-1 \right |+5,\: \textrm{maka nilai }\\ &\alpha +\beta\: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle -2&&&&&\textrm{D}.&\displaystyle 1\\ \textrm{B}.&\displaystyle -1&&\textrm{C}.&\displaystyle 0&&\textrm{E}.&\color{red}2 \end{array}\\\\ &\textbf{Jawab}:\textbf{E}\\ &\begin{aligned}&x^{2}-2x=\left | x-1 \right |+5\Leftrightarrow x^{2}-2x-5=\left | x-1 \right |\\ &\color{blue}\textrm{Untuk}\: \: \color{black}x\geq 1,\color{blue}\: \: \textrm{persamaan akan menjadi}\\ &x^{2}-2x-5=x-1\Leftrightarrow x^{2}-2x-x-5+1=0\\ &x^{2}-3x-4=0\Leftrightarrow (x-4)(x+1)=0\\ &\Leftrightarrow x=4\: (\textrm{memenuhi})\: \: \textrm{atau}\: \: x=-1\: (\textrm{tidak})\\ &\color{blue}\textrm{Untuk}\: \: \color{black}x<1,\color{blue}\: \: \textrm{persamaan akan menjadi}\\ &x^{2}-2x-5=1-x\Leftrightarrow x^{2}-2x+x-5-1=0\\ &x^{2}-x-6=0\Leftrightarrow (x-3)(x+2)=0\\ &\Leftrightarrow x=3\: (\textrm{tidak})\: \: \textrm{atau}\: \: x=-2\: (\textrm{memenuhi})\\ &\color{blue}\textrm{Pilih}\: \: \alpha =4,\: \textrm{dan}\: \: \beta =-2,\: \textrm{maka}\\ &\alpha +\beta =4+(-2)=\color{red}2 \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 14.&\textrm{Persamaan kuadrat}\: \: x^{2}-2x+m=0 \: \: \textrm{mempunyai }\\ &\textrm{akar-akar yang rasional, maka nilai}\: \: m\: \: \textrm{yang}\\ &\textrm{mungkin adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\color{red}1-\displaystyle \frac{k^{2}}{4}&\textrm{untuk}&k=0,1,2,\cdots &&&\\ \textrm{B}.&1+\displaystyle \frac{k^{2}}{4}&\textrm{untuk}&k=0,1,2,\cdots &&\\ \textrm{C}.&\displaystyle \frac{k^{2}}{4}&\textrm{untuk}&k=0,1,2,\cdots &&\\ \textrm{D}.&\displaystyle \frac{k^{2}-1}{4}&\textrm{untuk}&k=0,1,2,\cdots &&\\ \textrm{E}.&1-\displaystyle \frac{k}{4}&\textrm{untuk}&k=0,1,2,\cdots &&\\ \end{array}\\\\ &\textbf{Jawab}:\textbf{A}\\ &\begin{aligned}&\textrm{Akar-akar dari PK}:x^{2}-2x+m=0\\ &x_{1,2}=\displaystyle \frac{-b\pm \sqrt{b^{2}-4ac}}{2a}=\frac{2\pm \sqrt{4-4m}}{2}\\ &\textrm{Agar nilai}\: \: m\: \: \textrm{rasional, maka}\\ &4-4m=k^{2}\Leftrightarrow 4m=4-k^{2}\Leftrightarrow m=\color{red}1-\displaystyle \frac{k^{2}}{4} \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 15.&\textrm{Penyelesaian terbesar dikurangi penyelesaian}\\ &\textrm{terkecil dari persamaan kuadrat}\\ &\left ( 7+4\sqrt{3} \right )x^{2}+\left ( 2+\sqrt{3} \right )x-2=0\: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle -2+3\sqrt{3}&&&&&\textrm{D}.&\color{red}\displaystyle 6-3\sqrt{3}\\ \textrm{B}.&\displaystyle 2-\sqrt{3}&&\textrm{C}.&\displaystyle 6+3\sqrt{3}&&\textrm{E}.&3\sqrt{3}+2 \end{array}\\\\ &\textbf{Jawab}:\textbf{D}\\ &\begin{aligned}&\textrm{Misalkan}\: \: \alpha \: \: \textrm{dan}\: \: \beta \: \: \textrm{adalah akar-akarnya, maka}\\&\alpha -\beta =\left |\displaystyle \frac{\sqrt{D}}{a} \right |=\frac{\sqrt{b^{2}-4ac}}{a}\\ &\qquad=\left |\displaystyle \frac{\sqrt{(2+\sqrt{3})^{2}-4(7+4\sqrt{3})(-2)}}{7+4\sqrt{3}} \right |\\ &\qquad=\left |\displaystyle \frac{\sqrt{4+3+4\sqrt{3}+56+32\sqrt{3}}}{7+4\sqrt{3}} \right |\\ &\qquad=\left |\displaystyle \frac{\sqrt{63+36\sqrt{3}}}{7+4\sqrt{3}} \right |=\left |\displaystyle \frac{\sqrt{9(7+4\sqrt{3})}}{7+4\sqrt{3}} \right |\\ &\qquad=\displaystyle \frac{3}{\sqrt{7+4\sqrt{3}}}=\frac{3}{\sqrt{(2+\sqrt{3})^{2}}}=\displaystyle \frac{3}{2+\sqrt{3}}\\ &\qquad=\displaystyle \frac{3}{2+\sqrt{3}}\frac{2-\sqrt{3}}{2-\sqrt{3}}=3(2-\sqrt{3})=\color{red}6-3\sqrt{3} \end{aligned} \end{array}$.
Contoh Soal 2 Persamaan Kuadrat (Kelas X/Fase E Semester Genap) Tahun 2024
$\begin{array}{ll}\\ 6.&\textrm{Diketahui}\: \: x_{1}\: \: \textrm{dan}\: \: x_{2}\: \: \textrm{akar-akar dari persamaan}\\ &x^{2}-3x-4=0\: .\: \textrm{Persamaan kuadrat baru yang}\\ &\textrm{memiliki akar-akar}\: \: 2x_{1}\: \: \textrm{dan}\: \: 2x_{2}\: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle 2x^{2}+6x-16=0&&&&&\textrm{D}.&\color{red}\displaystyle x^{2}-6x-16=0\\ \textrm{B}.&\displaystyle 2x^{2}-6x-16=0&&&&&\textrm{E}.&\displaystyle x^{2}+6x-16=0\\ \textrm{C}.&x^{2}+6x+16=0&& \end{array}\\\\ &\textbf{Jawab}:\textbf{D}\\ &\textrm{Diketahui bahwa PK}:x^{2}-3x-4=0\\ &\textrm{dengan}\: \: a=1,\: b=-3,\: \: \textrm{dan}\: \: c=-4\\ &\color{blue}\textrm{Alternatif 1}\\ &\textrm{Misalkan Persamaan Kuadrat baru dengan}\\ &\textrm{akar-akar}\: \: \alpha=2x_{1}\: \: \textrm{dan}\: \: \beta =2x_{2},\: \textrm{adalah}\\ &\color{red}x^{2}-(\alpha +\beta )x+\alpha \beta =0\\ &\Leftrightarrow x^{2}-(2x_{1}+2x_{2})x+2x_{1}\times 2x_{2}=0\\ &\Leftrightarrow x^{2}-2(x_{1}+x_{2})x+4x_{1}x_{2}=0\\ &\Leftrightarrow x^{2}-2\left (\displaystyle -\frac{b}{a} \right )x+4\left ( \displaystyle \frac{c}{a} \right )=0\\ &\Leftrightarrow x^{2}-2(3)x+4(-4)=0\Leftrightarrow \color{red}x^{2}-6x-16=0\\ &\color{blue}\textrm{Alternatif 2}\\ &\begin{aligned}&\textrm{PK lama}:x^{2}-3x-4=0\\ &\qquad\qquad\textrm{dengan}\: \: x_{1}\: \: \textrm{dan}\: \: x_{2}\\ &\textrm{PK baru dengan}\: \: 2x_{1}\: \: \textrm{dan}\: \: 2x_{2}\\ &\textrm{PK baru}:x^{2}-3(\color{red}2\color{black})x-4(\color{red}2^{2}\color{black})=0\\ &\qquad\qquad\Leftrightarrow \color{red}x^{2}-6x-16=0\\ &\textrm{Formula tersebut dapat digunakan},\\ &\textrm{syaratnya koefisien dari}\: \: x^{2}=1\\ \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 7.&\textrm{Diketahui}\: \: x_{1}\: \: \textrm{dan}\: \: x_{2}\: \: \textrm{akar-akar dari persamaan}\\ &2x^{2}-3x+4=0\: .\: \textrm{Persamaan kuadrat baru yang}\\ &\textrm{memiliki akar-akar}\: \: 2x_{1}-1\: \: \textrm{dan}\: \: 2x_{2}-1\: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle 2x^{2}+x-6=0&&&&&\textrm{D}.&\color{red}\displaystyle x^{2}+x-6=0\\ \textrm{B}.&\displaystyle x^{2}+5x+6=0&&&&&\textrm{E}.&\displaystyle x^{2}-x+6=0\\ \textrm{C}.&x^{2}-5x+6=0&& \end{array}\\\\ &\textbf{Jawab}:\textbf{D}\\ &\textrm{Diketahui bahwa PK}:2x^{2}-3x+4=0\\ &\textrm{dengan}\: \: a=2,\: b=-3,\: \: \textrm{dan}\: \: c=4\\ &\begin{aligned}&\textrm{Misalkan Persamaan Kuadrat baru dengan}\\ &\textrm{akar-akar}\: \: \alpha=2x_{1}-1\: \: \textrm{dan}\: \: \beta =2x_{2}-1,\: \textrm{adalah}\\ &\color{red}x^{2}-(\alpha +\beta )x+\alpha \beta =0\\ &\Leftrightarrow x^{2}-(2x_{1}-1+2x_{2}-1)x+(2x_{1}-1)\times (2x_{2}-1)=0\\ &\Leftrightarrow x^{2}-\left (2(x_{1}+x_{2})-2 \right )x+4x_{1}x_{2}-2(x_{1}+x_{2})+1=0\\ &\Leftrightarrow x^{2}-\left (2\left (\displaystyle -\frac{b}{a} \right )-2 \right )x+4\left ( \displaystyle \frac{c}{a} \right )-2\left ( -\displaystyle \frac{b}{a} \right )+1=0\\ &\Leftrightarrow x^{2}-(2(3/2)-2)x+4(4/2)-2(3/2)+1=0\\ &\Leftrightarrow x^{2}-x+(8-3+1)=0\Leftrightarrow \color{red}x^{2}-x+6=0 \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 8.&\textrm{Misalkan Persamaan Kuadrat baru dengan}\\ &\left ( \displaystyle \frac{a+b}{2} \right )\: \textrm{adalah 6 dan rata-rata geometri}\\ & \sqrt{ab}\: \: \textrm{dari kedua bilangan tersebut adalah 10}\\ &\textrm{Persamaan kuadrat yang akar-akarnya kedua}\\ &\textrm{kedua bilangan tersebut adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle x^{2}+12x-100=0&&&&&\textrm{D}.&\color{red}\displaystyle x^{2}-12x+100=0\\ \textrm{B}.&\displaystyle x^{2}+6x+100=0&&&&&\textrm{E}.&\displaystyle x^{2}-6x+100=0\\ \textrm{C}.&x^{2}-12x-10=0&& \end{array}\\\\ &\textbf{Jawab}:\textbf{D}\\ &\textrm{Formula PK}:x^{2}-(a+b)x+ab=0\\ &\textrm{dengan}\: \: \left\{\begin{matrix} \left ( \displaystyle \frac{a+b}{2} \right )\Rightarrow a+b=12\\ \sqrt{ab}=10\Rightarrow ab=100 \end{matrix}\right.\\ &\textrm{PK yang diinginkan}:\color{red}x^{2}-12x+100=0 \end{array}$.
$\begin{array}{ll}\\ 9.&\textrm{Akar-akar dari persamaan}\: \: x^{2}+(m-1)x-5=0\\ &\textrm{adalah}\: \: x_{1}\: \: \textrm{dan}\: \: x_{2}.\: \textrm{Jika}\: \: x_{1}^{2}+x_{2}^{2}-2x_{1}x_{2}=8m,\\ &\textrm{maka nilai}\: \: m\: \: \textrm{ adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle -6\: \: \textrm{atau}\: \: -14&&&&&\textrm{D}.&\color{red}\displaystyle 3\: \: \textrm{atau}\: \: 7\\ \textrm{B}.&\displaystyle 6\: \: \textrm{atau}\: \: 14&&&&&\textrm{E}.&\displaystyle -3\: \: \textrm{atau}\: \: -7\\ \textrm{C}.&3\: \: \textrm{atau}\: \: -7&& \end{array}\\\\ &\textbf{Jawab}:\textbf{D}\\ &\begin{aligned}&\textrm{Diketahui} \: \: x^{2}+(m-1)x-5=0\\ &\textrm{dengan akar-akar}\: \: x_{1}\: \: \textrm{dan}\: \: x_{2}\: \left\{\begin{matrix} x_{1}+ x_{2}=1-m\\ x_{1}\times x_{2}=-5\: \: \: \: \: \: \end{matrix}\right.\\ &\textrm{Selanjutnya},\\ &x_{1}^{2}+x_{2}^{2}-2x_{1}x_{2}=8m\\ &\Leftrightarrow \left ( x_{1}+ x_{2} \right )^{2}-4x_{1}x_{2}=8\Leftrightarrow (1-m)^{2}-4(-5)=8m\\ &\Leftrightarrow 1-2m+m^{}+20-8m=0\\ &\Leftrightarrow m^{2}-10m+21=0\Leftrightarrow (m-3)(m-7)=0\\ &\Leftrightarrow m=3\: \: atau\: \: m=7 \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 10.&\textrm{Agus dan Budi dapat menyelesaikan pengecatan }\\ &\textrm{secara bersama-sama dalam 8 hari. Jika bekerja }\\ &\textrm{sendiri, Budi membutuhkan waktu 12 hari lebih}\\ &\textrm{lama dari Agus. Waktu yang Agus jika ia bekerja}\\ &\textrm{sendiri mengecat rumah tersebut adalah}\: ...\: \textrm{hari}\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle 10&&&&&\textrm{D}.&\displaystyle 16\\ \textrm{B}.&\color{red}\displaystyle 12&&\textrm{C}.&\displaystyle 14&&\textrm{E}.&18 \end{array}\\\\ &\textbf{Jawab}:\textbf{B}\\ &\textrm{Diketahui bahwa}\\ &\begin{aligned}&\color{blue}\textrm{Waktu yang dibutuhkan}\\ &\bullet \: \textrm{Waktu yang dibutuhkan Agus}=x\: \: \textrm{hari}\\ &\bullet \: \textrm{Waktu yang dibutuhkan Budi}=x+12\: \: \textrm{hari, dan}\\ &\bullet \: \textrm{Waktu yang dibutuhkan Agus dan Budi}=8\: \: \textrm{hari}\\ &\color{blue}\textrm{Hasil pekerjaan pengecatan rumah dalam sehari}\\ &\bullet \: \textrm{Agus dalam 8 hari}=\displaystyle \frac{8}{x}\: \: \textrm{bagian}\\ &\bullet \: \textrm{Budi dalam 8 hari}=\displaystyle \frac{8}{x+12}\: \: \textrm{bagian, dan}\\ &\bullet \: \textrm{Bagian Agus dan Budi dalam 8 hari}\\&\qquad\qquad\qquad\qquad\qquad \displaystyle \frac{8}{x}+\frac{8}{x+12}=1\\ &\textrm{Sehingga}\\ &\displaystyle \frac{8}{x}+\frac{8}{x+12}=1\Leftrightarrow \frac{8(x+12)+8(x)}{x(x+12)}-1=0\\ &\Leftrightarrow \displaystyle \frac{8x+96+8x-x(x+12)}{x(x+12)}=0\\ &=\Leftrightarrow -x^{2}+4x+96=0\Leftrightarrow x^{2}-4x-96=0\\ &\Leftrightarrow (x-12)(x+8)=0\\ &x=12\: (\textrm{solusi})\: \: \textrm{atau}\: \: x=-8\: (\textrm{bukan}) \end{aligned} \\ &\textrm{Jadi, waktu yang dibutuhkan Agus adalah}\: \: \color{red}\displaystyle 12\: \: \textrm{hari} \end{array}$
Contoh Soal 1 Persamaan Kuadrat (Kelas X/Fase E Semester Genap) Tahun 2024
$\begin{array}{ll}\\ 1.&\textrm{Penyelesaian terkecil dari persamaan kuadrat}\\ & \left ( x-\displaystyle \frac{3}{4} \right )\left ( x-\displaystyle \frac{3}{4} \right )+\left ( x-\displaystyle \frac{3}{4} \right )\left ( x-\displaystyle \frac{1}{2} \right )=0\\ &\textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&-\displaystyle \frac{3}{4}&&&&&\textrm{D}.&\displaystyle \frac{3}{4}\\ \textrm{B}.&\displaystyle \frac{1}{2}&&\textrm{C}.&\color{red}\displaystyle \frac{5}{8}&&\textrm{E}.&1 \end{array}\\\\ &\textbf{Jawab}:\textbf{C}\\ &\begin{aligned}&\left ( \color{blue}x-\displaystyle \frac{3}{4}\color{black} \right )\left ( x-\displaystyle \frac{3}{4} \right )+\left ( \color{blue}x-\displaystyle \frac{3}{4}\color{black} \right )\left ( x-\displaystyle \frac{1}{2} \right )=0\\ &\Leftrightarrow \left ( \color{blue}x-\displaystyle \frac{3}{4}\color{black} \right )\left ( x-\displaystyle \frac{3}{4}+x-\frac{1}{2} \right )=0\\ &\Leftrightarrow \left ( \color{blue}x-\displaystyle \frac{3}{4}\color{black} \right )\left ( 2x-\displaystyle \frac{5}{4} \right )=0\\ &\Leftrightarrow x-\displaystyle \frac{3}{4}=0\: \: \textrm{atau}\: \: 2x-\frac{5}{4}=0\\ &\Leftrightarrow x=\displaystyle \frac{3}{4}\: \: \textrm{atau}\: \: 2x=\frac{5}{4}\\ &\Leftrightarrow x=\displaystyle \frac{6}{8}\: \: \textrm{atau}\: \: x=\frac{5}{8}\\ \end{aligned} \\ &\textrm{Jadi, nilai terkecilnya adalah}\: \: \color{red}\displaystyle \frac{5}{8} \end{array}$.
$\begin{array}{ll}\\ 2.&\textrm{Jika}\: \: m\: \: \textrm{dan}\: \: n\: \: \textrm{adalah penyelesaian dari}\\ &\textrm{persamaan kuadrat}\: \: x^{2}+mx+n=0,\\ &\textrm{dengan}\: \: m\neq 0\: \: \textrm{dan}\: \: n\neq 0\: \: \textrm{jumlah kedua}\\ &\textrm{penyelesaian tersebut adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle -\frac{1}{2}&&&&&\textrm{D}.&\displaystyle 1\\ \textrm{B}.&\color{red}\displaystyle -1&&\textrm{C}.&\displaystyle \frac{1}{2}&&\textrm{E}.&\displaystyle \textrm{tidak dapat ditentukan} \end{array}\\\\ &\textbf{Jawab}:\textbf{B}\\ &\textrm{Diketahui bahwa PK}:x^{2}+mx+n=0\\ &\textrm{dengan}\: \: a=1,\: b=m,\: \: \textrm{dan}\: \: c=n\\ &\begin{aligned}&\bullet \quad x_{1}+ x_{2}=-\displaystyle \frac{b}{a}\Leftrightarrow m+n=-\frac{m}{1}\\ &\bullet \quad x_{1}\times x_{2}=\displaystyle \frac{c}{a}\quad\Leftrightarrow mn=\frac{n}{1}\Leftrightarrow m=1\\ &\textbf{Dari persamaan pertama akan diperoleh}\\ &m+n=-m=\color{red}-1 \end{aligned}\\ &\textrm{Jadi, nilai m+n adalah}\: \: \color{red}\displaystyle -1 \end{array}$.
$\begin{array}{ll}\\ 3.&\textrm{Jika persamaan}\: \: 2x^{2}-3x-14=0\: \: \textrm{mempunyai}\\&\textrm{akar-akar}\: \: x_{1}\: \: \textrm{dan}\: \: x_{2}\: \: \textrm{dengan}\: \: x_{1}>x_{2}, \: \: \textrm{maka}\\ &2x_{1}+3x_{2}\: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle 2&&&&&\textrm{D}.&\displaystyle -2\\ \textrm{B}.&\color{red}\displaystyle 1&&\textrm{C}.&\displaystyle -1&&\textrm{E}.&-5 \end{array}\\\\ &\textbf{Jawab}:\textbf{B}\\ &\textrm{Diketahui bahwa PK}\: :\: 2x^{2}-3x-14=0\\ &\begin{aligned}&2x^{2}-3x-14=0\Leftrightarrow \displaystyle \frac{(2x-7)(2x+4)}{2}=0\\ &\Leftrightarrow (2x-7)(x+2)=0\\ &\Leftrightarrow 2x-7=0\: \: \textrm{atau}\: \: x+2=0\\ &x=\displaystyle \frac{7}{2}\: \: \textrm{atau}\: \: x=-2\\ &\textrm{Karena nilai dari}\: \: x_{1}>x_{2},\: \: \textrm{maka}\\ &x_{1}=\displaystyle \frac{7}{2}\: \: \textrm{dan}\: \: x_{2}=-2\\ \end{aligned}\\ &\textrm{Sehingga nilai}\: \: 2x_{1}+3x_{2}=\color{blue}2\displaystyle \frac{7}{2}+3(-2)\color{black}=7-6=\color{red}1 \end{array}$.
$\begin{array}{ll}\\ 4.&\textrm{Jika}\: \: x_{1}\: \: \textrm{dan}\: \: x_{2}\: \: \textrm{adalah akar-akar dari}\\ &\textrm{persamaan kuadrat}\: \: x^{2}+6x+2=0,\\ &\textrm{nilai dari}\: \: x_{1}^{2}+x_{2}^{2}-4x_{1}x_{2}\: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\textrm{A}.&\displaystyle 28&&&&&\textrm{D}.&\displaystyle 18\\ \textrm{B}.&\displaystyle 26&&\textrm{C}.&\color{red}\displaystyle 24&&\textrm{E}.&\displaystyle 16 \end{array}\\\\ &\textbf{Jawab}:\textbf{C}\\ &\textrm{Diketahui bahwa PK}:x^{2}+6x+2=0\\ &\textrm{dengan}\: \: a=1,\: b=6,\: \: \textrm{dan}\: \: c=2\\ &\color{blue}\textrm{Alternatif 1}\\ &\begin{aligned}&\color{blue}x_{1}^{2}+x_{2}^{2}\color{black}-4x_{1}x_{2}\\ &=\color{blue}\left ( x_{1}+x_{2} \right )^{2}-2x_{1}x_{2}\color{black}-4x_{1}x_{2}\\ &=\left ( x_{1}+x_{2} \right )^{2}-6x_{1}x_{2}\\ &=\left ( -\displaystyle \frac{b}{a} \right )^{2}-6\left ( \displaystyle \frac{c}{a} \right )=(-6)^{2}-6(2)\\ &=36-12\\ &=\color{red}24 \end{aligned}\\ &\color{blue}\textrm{Alternatif 2}\\ &\begin{aligned}&x^{2}+6x+2=0\Leftrightarrow x^{2}=-6x-2\\ &\bullet \quad x=x_{1}\Rightarrow x_{1}^{2}=-6x_{1}-2\\ &\bullet \quad x=x_{2}\Rightarrow x_{2}^{2}=-6x_{2}-2\\ &\qquad \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\quad+ \\ & \Leftrightarrow \quad x_{1}^{2}+x_{2}^{2}=-6\left (x_{1}+x_{2} \right )-4\\ & \Leftrightarrow \quad x_{1}^{2}+x_{2}^{2}-4x_{1}x_{2}=-6\left (x_{1}+x_{2} \right )-4x_{1}x_{2}-4\\ &\qquad\qquad\qquad=-6\left ( -\displaystyle \frac{b}{a} \right )-4\left ( \frac{c}{a} \right )-4\\ &\qquad\qquad\qquad=-6(-6)-4(2)-4\\ &\qquad\qquad\qquad=36-8-4\\ &\qquad\qquad\qquad=\color{red}24\\ \end{aligned}\\ &\textrm{Jadi, nilai yang dimaksud adalah}\: \: \color{red}\displaystyle 24 \end{array}$.
$\begin{array}{ll}\\ 5.&\textrm{Diketahui akar-akar dari persamaan}\: \: 7x=4x^{2}+3\\ &\textrm{adalah}\: \: \alpha \: \: \textrm{dan}\: \: \beta .\: \textrm{Nilai} \: \: \displaystyle \frac{\alpha }{\beta }+\frac{\beta }{\alpha }=....\\ &\begin{array}{lllllllll}\textrm{A}.&\color{red}\displaystyle \frac{25}{12}&&&&&\textrm{D}.&\displaystyle \frac{16}{25}\\\\ \textrm{B}.&\displaystyle \frac{24}{12}&&\textrm{C}.&\displaystyle \frac{20}{25}&&\textrm{E}.&\displaystyle \frac{12}{25} \end{array}\\\\ &\textbf{Jawab}:\textbf{A}\\ &\textrm{Diketahui bahwa PK}:4x^{2}-7x+3=0\\ &\textrm{dengan}\: \: a=4,\: b=-7,\: \: \textrm{dan}\: \: c=3\\ &\begin{aligned}&\displaystyle \frac{\alpha }{\beta }+\frac{\beta }{\alpha }=\displaystyle \frac{\alpha ^{2}+\beta ^{2}}{\alpha \beta }=\frac{(\alpha +\beta )^{2}-2\alpha \beta }{\alpha \beta }\\ &=\displaystyle \frac{\left (\displaystyle -\frac{b}{a} \right )^{2} -2\left (\displaystyle \frac{c}{a} \right )}{\displaystyle \frac{c}{a}}=\displaystyle \frac{\left ( \displaystyle \frac{7}{4} \right )^{2}-2\left ( \displaystyle \frac{3}{4} \right )}{\displaystyle \frac{3}{4}}\\ &=\displaystyle \frac{\displaystyle \frac{49}{16}-\frac{6}{4}}{\displaystyle \frac{3}{4}}=\displaystyle \frac{\displaystyle \frac{49-24}{16}}{\displaystyle \frac{3}{4}}=\displaystyle \frac{\displaystyle \frac{25}{16}}{\displaystyle \frac{3}{4}}=\displaystyle \frac{25}{16}\times \frac{4}{3}\\ &=\color{red}\displaystyle \frac{25}{12} \end{aligned} \end{array}$.
- Budhi, Wono S. 2014. Bupena Matematika Kelompok Wajib untuk SMA/MA Kelas X. Jakarta: ERLANGGA.
Persamaan Kuadrat (Kelas X/Fase E Semester 2)
Semester Genap
- Persamaan dan Fungsi Kuadrat
- Statistika
- Aturan Pencacahan dan Peluang
- Budhi, Wono S. 2014. Bupena Matematika Kelompok Wajib untuk SMA/MA Kelas X. Jakarta: ERLANGGA.
- Idris, M., Rusdi, 1. 2015. Langkah Awal Meraih Medali Emas Olimpiade Matematika SMA. Bandung: YRAMA WIDYA.
- Kurnianingsih, Sri, Kuntarti & Sulistiyono. 2007. Matematika SMA dan MA untuk Kelas X Semester 1. Jakarta: ESIS.
- Marwanta, dkk. 2013. Matematika SMA Kelas X. Jakarta: YUDISTIRA.
- Sobirin. 2005. Kompas Matematika: Strategi Praktis Menguasai Tes Matematika SMA Kelas 1. Jakarta: KAWAN PUSTAKA.