Tampilkan postingan dengan label natural logarithm. Tampilkan semua postingan
Tampilkan postingan dengan label natural logarithm. Tampilkan semua postingan

Bilangan e pada Logaritma (Bagian 2)

 D. Lanjutan penentuan nilai e

Perhatikanlah bentuk

$\begin{aligned}\begin{cases} 1. & =\left ( 1+\displaystyle \frac{1}{n} \right )^{n} \\\\ 2. & =\left ( 1-\displaystyle \frac{1}{n} \right )^{-n} \end{cases} \end{aligned}$.

Menurut Binomial Newton,

$\color{blue}\begin{aligned}(a+b)^{n}\color{black}=\, &\color{red}C_{0}^{n}a^{n}b^{0}+C_{1}^{n}a^{n-1}b^{1}+C_{2}^{n}a^{n-2}b^{2}\\ &+C_{3}^{n}a^{n-3}b^{3}+\cdots +C_{n-3}^{n}a^{3}b^{n-3}\\ &+C_{n-2}^{n}a^{2}b^{n-2}+C_{n-1}^{n}a^{1}b^{n-1}+C_{n}^{n}a^{0}b^{n}\\ &\color{black}=\displaystyle \sum_{r=0}^{n}C_{r}^{\color{red}n}a^{\color{red}n\color{black}-r}b^{r} \end{aligned}$.

Bentuk perluasannya, ketika  a=1 dan b=x

$\color{blue}\begin{aligned}\color{black}\quad(1+x)&^{n}\\ \color{black}=\, &\color{red}C_{0}^{n}1^{n}x^{0}+C_{1}^{n}1^{n-1}x^{1}+C_{2}^{n}1^{n-2}x^{2}\\ &+C_{3}^{n}1^{n-3}x^{3}+\cdots +C_{n-3}^{n}1^{3}x^{n-3}\\ &+C_{n-2}^{n}1^{2}x^{n-2}+C_{n-1}^{n}1^{1}x^{n-1}+C_{n}^{n}1^{0}x^{n}\\ =\, &\color{red}C_{0}^{n}+C_{1}^{n}x+C_{2}^{n}x^{2} +C_{3}^{n}x^{3}+\cdots \\ &+C_{n-3}^{n}x^{n-3} +C_{n-2}^{n}x^{n-2}+C_{n-1}^{n}x^{n-1}\\ &+C_{n}^{n}x^{n}\\  \end{aligned}$

Sehingga

$\begin{aligned}(1+x)^{n}&=1+nx+\displaystyle \frac{n(n-1)}{2!}x^{2}+\displaystyle \frac{n(n-1)(n-2)}{3!}x^{3}\\ &+... +\displaystyle \frac{n(n-1)(n-2)...(n-r+1)}{(r-1)!}x^{r-1}+... \end{aligned}$.

Saat  $x=\displaystyle \frac{1}{n}$,

$\begin{aligned}\left ( 1+\displaystyle \frac{1}{n} \right )^{n}&=1+\displaystyle \frac{n}{1}.\left (\frac{1}{n} \right )^{1}+\displaystyle \frac{n(n-1)}{1.2}\left ( \displaystyle \frac{1}{n} \right )^{2}\\ &+\displaystyle \frac{n(n-1)(n-2)}{1.2.3}\left ( \displaystyle \frac{1}{n} \right )^{2}\\ &+...+\displaystyle \frac{n(n-1)(n-2)...1}{1.2.3...n}\left ( \displaystyle \frac{1}{n} \right )^{n} \end{aligned}$.

Jika  $U_{n}=\left ( 1+\displaystyle \frac{1}{n} \right )^{n}$, maka didapatkan

$\begin{aligned}U_{n}&=1+1+\displaystyle \frac{1}{2!}\left ( 1-\displaystyle \frac{1}{n} \right )+\displaystyle \frac{1}{3!}\left ( 1-\displaystyle \frac{1}{n} \right )\left ( 1-\displaystyle \frac{2}{n} \right )\\ &+\displaystyle \frac{1}{4!}\left ( 1-\displaystyle \frac{1}{n} \right )\left ( 1-\displaystyle \frac{2}{n} \right )\left ( 1-\displaystyle \frac{3}{n} \right )\\ &+...+\displaystyle \frac{1}{n!}\left ( 1-\displaystyle \frac{1}{n} \right )\left ( 1-\displaystyle \frac{2}{n} \right )\left ( 1-\displaystyle \frac{3}{n} \right )...\left ( 1-\displaystyle \frac{n-1}{n} \right ) \end{aligned}$.

Karena bentuk di atas  $\color{red}\left ( 1-\displaystyle \frac{p}{n} \right )<1$, dengan  $p,n\in \mathbb{N}$, maka akan diperoleh

$U_{1}<U_{n}<1+1+\displaystyle \frac{1}{2!}+\displaystyle \frac{1}{3!}+\displaystyle \frac{1}{4!}+...+\displaystyle \frac{1}{n!}$

Serta diketahui bentuk

$\begin{aligned}&\displaystyle \frac{1}{2.3}<\frac{1}{2.2}\\ &\displaystyle \frac{1}{2.3.4}<\frac{1}{2.2.2}\\ &\displaystyle \frac{1}{2.3.4.5}<\frac{1}{2.2.2.2}\\ &...\\ &\displaystyle \frac{1}{2.3.3.4...n}<\frac{1}{2^{n-1}}\\ \end{aligned}$.

Dan diketahui pula dari uraian di atas $U_{1}=2$, maka

$\begin{aligned}&U_{1}<U_{n}<1+1+\displaystyle \frac{1}{2!}+\displaystyle \frac{1}{3!}+\displaystyle \frac{1}{4!}+...+\displaystyle \frac{1}{n!}\\ &\Leftrightarrow \: 2<U_{n}<1+1+\underset{\color{blue}\textrm{deret konvergen}}{\underbrace{\left ( \displaystyle \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^{n}} \right )}}\\ &\Leftrightarrow \: 2<U_{n}<1+1+\left ( \displaystyle \frac{\frac{1}{2}}{1-\frac{1}{2}} \right )\\ &\Leftrightarrow \: 2<U_{n}<1+1+1\\ &\Leftrightarrow \: 2<U_{n}<3\\ &\Leftrightarrow \: 2<\underset{n\rightarrow \infty }{\textrm{Lim}}\: \: \displaystyle U_{n}<3 \end{aligned}$.

Selanjutnya bentuk  $\underset{h\rightarrow 0 }{\textrm{Lim}}\: \: \displaystyle U_{n}=e$, dengan e adalah bilangan irasional dengan bentuk desimal e = 2,71828....


DAFTAR PUSTAKA

  1. Koesmantoro, Rawuh (Ed.). 2001. Matematika Pendahuluan (Seri Matematika). Cet. VII. Bandung: ITB.









Bilangan e pada Logaritma (Bagian 1)

Materi pendukung pada aplikasi logaritma yang melibatkan penggunaan konstanta e di sini

A. Pendahuluan

Bilangan e (epsilon) yang dimaksud adalah bilangan basis pada logaritma alami yang besarnya  dalam bentuk semimal e = 2,71828...

Dalam logaritma basis 10, log e = 0,4343. Sedangkankan dalam logaritma dengan basis e dinamakan logaritma natural (kadang dinamai dengan nama penemunya, yaitu Napier, matematikawan dari Skotlandia) dengan dilambangkan $^{e}\log x=\ln x$.

$\color{blue}^{e}\log x=\, ^{2,7183}\log x=\ln x$.

Bilangan e (epsilon) didapatkan dari bentuk  $\left ( 1+\displaystyle \frac{1}{n} \right )^{n}$  dengan $n$. bilangan asli.

Sebagai ilustrasi prosesnya mendapatkannya adalah sebagai berikut:

$\begin{array}{|l|l|}\hline n=1&\begin{aligned}&=\left ( 1+\displaystyle \frac{1}{1} \right )^{1}\\ &=2 \end{aligned}\\\hline n=2&\begin{aligned}&=\left ( 1+\displaystyle \frac{1}{2} \right )^{2}\\ &=2,25 \end{aligned}\\\hline n=3&\begin{aligned}&=\left ( 1+\displaystyle \frac{1}{3} \right )^{3}\\ &=2,37... \end{aligned}\\\hline n=30&\begin{aligned}&=\left ( 1+\displaystyle \frac{1}{30} \right )^{30}\\ &=2,67... \end{aligned}\\\hline n=105&\begin{aligned}&=\left ( 1+\displaystyle \frac{1}{105} \right )^{105}\\ &=2,705... \end{aligned}\\\hline n=1000&\begin{aligned}&=\left ( 1+\displaystyle \frac{1}{1000} \right )^{1000}\\ &=2,7169... \end{aligned}\\\hline n=100000&\begin{aligned}&=\left ( 1+\displaystyle \frac{1}{100000} \right )^{100000}\\ &=2,7182... \end{aligned}\\\hline \end{array}$.

B. Sifat-Sifat

$\begin{aligned}1.\quad&\ln a.b=\ln a+\ln b\\ 2.\quad&\ln \left ( \displaystyle \frac{a}{b} \right )=\ln a-\ln b\\ 3.\quad&\ln a^{\textrm{p}}=\textrm{p}\times \ln a\\ 4.\quad&\ln a=\displaystyle \frac{\log a}{\log e}\\ 5.\quad&\ln e=1,\: \: \textrm{karena}\: \: ^{e}\log e=1\\ 6.\quad&\ln \sqrt[\textrm{p}]{n}=\displaystyle \frac{1}{\textrm{p}}\times \ln a\\ \end{aligned}$.

C. Hubungan Antara Logaritma Biasa dengan Logaritma Alami

Perhatikan tabel berikut:

$\begin{array}{|l|l|}\hline \begin{aligned}^{e}\log x&=\ln x,\\ \displaystyle \frac{\log x}{\log e}&=\ln x\\ \log x&=\log e.\ln x\\ &=0,4343.\ln x\\ &\\ & \end{aligned}&\begin{aligned}\ln x&=\, ^{e}\log x\\ &=\displaystyle \frac{\log x}{\log e}\\ &=\displaystyle \frac{\log x}{\log 2,71828}\\ &=\displaystyle \frac{\log x}{0,4343}\\ &=2,303\log x \end{aligned}\\\hline \end{array}$.

Sehingga dapat disimpulkan

$\begin{aligned}\bullet\quad &\log x=0,4343\ln x\\ \bullet \quad&\ln x=2,303\log x \end{aligned}$

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Jika}\: \: \log 2=0,301,\: \: \textrm{tentukan nilai}\\ &\textrm{dari}\: \: \ln 2\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\ln 2&=2,303\log 2\\ &=2,303(0,301)\\ &=0,6932 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Jika}\: \: \log 3=0,4771\: \: \textrm{dan}\: \: \log 5=0,6990\\ & \textrm{tentukan nilai dari}\: \: \ln 45\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\ln 45&=2,303\log 45\\ &=2,303\log 9.5\\ &=2,303\left ( \log 9+\log 5 \right )\\ &=2,303\left ( \log 3^{2}+\log 5 \right )\\ &=2,303\left ( 2\log 3+\log 5 \right )\\ &=2,303\left ( 2.0,4771+0,6990 \right )\\ &=2,303\left ( 1,6532 \right )\\ &=3,8073 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 3.&\textrm{Tentukan nilai dari}\: \: \ln 345,67^{1.25}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\ln 345,67^{1.25}&=1,25\times \ln 345,67\\ &=1,25\times 2,303\log 345,67\\ &=1,25\times 2,303\times 2,5387\\ &=7,3084 \end{aligned} \end{array}$.

$\LARGE\colorbox{aqua}{LATIHAN SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Jika}\: \: \log 3=0,4771\: \: \textrm{dan}\: \: \log 5=0,699\\ &\textrm{Tentukanlah nilai}\: \: \ln 75 \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Jika}\: \: \log 2=0,3010\: \: \textrm{dan}\: \: \log 3=0,4771\\ &\textrm{Tentukanlah nilai}\: \: \ln 4-\ln 9\end{array}$.

$\begin{array}{ll}\\ 3.&\textrm{Jika}\: \: \log 2=0,3010\: \: \textrm{dan}\: \: \log 7=0,8451\\ &\textrm{Tentukanlah nilai}\: \: \ln (8\times 49)\end{array}$.

$\begin{array}{ll}\\ 4.&\textrm{Jika}\: \: \log 2=0,3010\: \: \textrm{dan}\: \: \log 7=0,8451\\ &\textrm{Tentukanlah nilai}\: \: \ln 140-\ln 5\end{array}$.

$\begin{array}{ll}\\ 5.&\textrm{Tentukan nilai dari}\: \: \ln 89,75\end{array}$.

$\begin{array}{ll}\\ 6.&\textrm{Tentukan nilai dari}\: \: \ln 3,456^{0,75}+\ln 5,678^{0,75}\end{array}$.

DAFTAR PUSTAKA

  1. Tim MGMP Matematika SMK PROV JATENG. 2007. Modul Matematika SMK Kelompok Teknik, Pertanian dan Kesehatan Semester 1 Kelas X.