PAS MATEMATIKA BLOG

Belajar matematika sejak dini

Lanjutan 1 Contoh Soal Persiapan Semester Gasal 2019/2020 Kelas X Wajib

on November 29, 2019 Tidak ada komentar:
Kirimkan Ini lewat EmailBlogThis!Bagikan ke XBerbagi ke FacebookBagikan ke Pinterest

Contoh Soal Persiapan Semester Gasal 2019/2020 Kelas X Wajib



on November 26, 2019 Tidak ada komentar:
Kirimkan Ini lewat EmailBlogThis!Bagikan ke XBerbagi ke FacebookBagikan ke Pinterest

Lanjutan 2 Contoh Soal Persiapan Semester Gasal 2019/2020 Kelas X Peminatan





\begin{array}{ll}\\ \fbox{23}.&\textrm{Diketahui persamaan}\\\\ &\displaystyle \frac{x^{2}}{10000}=\displaystyle \frac{1000}{x^{2\left ( {{^{10}\log x}} \right )-8}} \\\\ &\textrm{Hasil kali dari nilai-nilai}\: \: x\: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\\ \textrm{A}.&10^{2}&&&\textrm{D}.&10^{7}\\ \textrm{B}.&10^{3}&\textrm{C}.&10^{4}&\textrm{E}.&10^{8} \end{array}\\\\ &\textrm{Jawab}:\quad \textbf{B}\\ &\begin{aligned}\displaystyle \frac{x^{2}}{10000}&=\displaystyle \frac{1000}{x^{2\left ( ^{10}\log x \right )-8}}\\ x^{2}.x^{2\left ( ^{10}\log x \right )-8}&=10^{3}.10^{4}\\ x^{2\left ( ^{10}\log x \right )-6}&=10^{7}\\ x^{2\log x-6}&=10^{7},\quad \textrm{di}-log-\textrm{kan masing-masing ruas}\\ \log x^{\log x^{2}-6}&= \log 10^{7}\\ \left ( 2\log x-6 \right )\log x&=7\\ 2\left ( \log x \right )^{2}-6\left ( \log x \right )-7&=0\\ \textrm{persamaan kuadrat yan}&\textrm{g variabelnya berupa}-log.\\ \textrm{Sehingga hasil kali dari}\, &\: \textrm{nilai-nilai}\: \: x-\textrm{nya adalah}:\\ \alpha +\beta &=-\displaystyle \frac{b}{a}\\ \log x_{1}+\log x_{2}&=-\displaystyle \frac{b}{a},\qquad \textrm{ingat bahwa}\: \: \log x=\, ^{10}\log x\\ \log x_{1}.x_{2}&=-\displaystyle \frac{-6}{2}\\ ^{10}\log x_{1}.x_{2}&=3\\ x_{1}.x_{2}&=10^{3} \end{aligned} \end{array}

on November 25, 2019 Tidak ada komentar:
Kirimkan Ini lewat EmailBlogThis!Bagikan ke XBerbagi ke FacebookBagikan ke Pinterest

Lanjutan 1 Contoh Soal Persiapan Semester Gasal 2019/2020 Kelas X Peminatan
















\begin{array}{ll}\\ \fbox{15}.&\textrm{Solusi untuk persamaan}\: \: 3^{2x+1}=81^{x-2}\: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\\ \textrm{A}.&0&&&\textrm{D}.&4\displaystyle \frac{1}{2}\\\\ \textrm{B}.&2&\textrm{C}.&4&\textrm{E}.&16 \end{array}\\\\ &\textrm{Jawab}:\quad \textbf{D}\\ &\begin{array}{|c|c|}\hline \begin{aligned}3^{2x+1}&=81^{x-2}\\ \left (3^{2x} \right ).3^{1}&=\left (3^{4} \right )^{x-2}\\ 3.\left (3^{2x} \right )&=3^{4x}.3^{-8}\\ 3.\left (3^{2x} \right )&=\displaystyle \frac{\left (3^{2x} \right )^{2}}{3^{8}}\\ 0&=\displaystyle \frac{\left (3^{2x} \right )^{2}}{3^{8}}-3\left ( 3^{2x} \right )\\ 0&=\left ( 3^{2x} \right )^{2}-3^{9}.\left ( 3^{2x} \right )\\ 0&=\left (3^{2x} \right )\left ( \left ( 3^{2x} \right )-3^{9} \right ) \end{aligned} &\begin{aligned}\textbf{atau}\qquad\qquad\qquad&\\ \left ( 3^{2x} \right )^{2}-27.\left ( 3^{2x} \right )&=0\\ \left (3^{2x} \right )\left ( \left ( 3^{2x} \right )-3^{9} \right )&=0\\ 3^{2x}=0\: \: \textrm{atau}\: \: 3^{2x}&=3^{9}\\ (\textrm{tm})\quad \textrm{atau}\: \: 3^{2x}&=3^{9}\\ 2^{x}&=9\\ x&=\displaystyle \frac{9}{2}\\ \textrm{atau}\: \: x&=4\displaystyle \frac{1}{2} \end{aligned} \\\hline \end{array} \end{array}



\begin{array}{ll}\\ \fbox{17}.&\textrm{Jika}\: \: \sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}=\sqrt{a}+\sqrt{b}+\sqrt{c},\\ &\textrm{maka nilai dari}\: \: \left ( a+b-c \right )^{abc}=....\\ &\begin{array}{lllllllll}\\ \textrm{A}.&1000&&&\textrm{D}.&-1\\ \textrm{B}.&1&\textrm{C}.&0&\textrm{E}.&-1000 \end{array}\\\\ &\textrm{Jawab}:\quad \textbf{C}\\ &\begin{aligned}\begin{aligned}\left (\sqrt{2}+\sqrt{3}+\sqrt{5} \right )^{2}&=\left (\sqrt{2}+\sqrt{3}+\sqrt{5} \right )\times \left (\sqrt{2}+\sqrt{3}+\sqrt{5} \right )\\ &=\sqrt{2.2}+\sqrt{2.3}+\sqrt{2.5}+\sqrt{3.2}+\sqrt{3.3}\\ &\qquad\qquad+\sqrt{3.5}+\sqrt{5.2}+\sqrt{5.3}+\sqrt{5.5}\\ &=2+2\sqrt{6}+2\sqrt{10}+3+2\sqrt{15}+5\\ &=2+3+5+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}\\ &=10+\sqrt{2^{2}.6}+\sqrt{2^{2}.10}+\sqrt{2^{2}.15}\\ &=10+\sqrt{24}+\sqrt{40}+\sqrt{60}\\ \sqrt{2}+\sqrt{3}+\sqrt{5}&=\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\\ &\begin{cases} a &=2 \\ b & =3 \\ c &=5 \end{cases}.\qquad \textrm{sesuai dengan urutannya}\\ \textrm{Sehingga nilai}\qquad &\\ \left ( a+b-c \right )^{abc}&=\left ( 2+3-5 \right )^{2.3.5}\\ &=0^{30}\\ &=0 \end{aligned} \end{aligned} \end{array}





\begin{array}{ll}\\ \fbox{20}.&\textrm{Nilai eksak dari}\\ &\displaystyle \frac{1}{10^{-2020}+1}+\frac{1}{10^{-2019}+1}+\frac{1}{10^{-2018}+1}+...+\displaystyle \frac{1}{10^{2018}+1}+\frac{1}{10^{2019}+1}+\frac{1}{10^{2020}+1} \\ &\begin{array}{lllllllll}\\ \textrm{A}.&2020&&&\textrm{D}.&2021,5\\ \textrm{B}.&2020,5&\textrm{C}.&2021&\textrm{E}.&2022 \end{array}\\\\ &\textrm{Jawab}:\quad \textbf{B}\\ &\begin{aligned}\textrm{Misal},\: \: x&=\frac{1}{10^{-2020}+1}+\frac{1}{10^{-2019}+1}+\frac{1}{10^{-2018}+1}+...+\frac{1}{10^{2018}+1}+\frac{1}{10^{2019}+1}+\frac{1}{10^{2020}+1}\\ \textrm{maka},\, \: x&=\frac{1}{\frac{1}{10^{2020}}+1}+\frac{1}{\frac{1}{10^{2019}}+1}+\frac{1}{\frac{1}{10^{2018}}+1}+...+\frac{1}{10^{2018}+1}+\frac{1}{10^{2019}+1}+\frac{1}{10^{2020}+1}\\ &=\frac{10^{2020}}{1+10^{2020}}+\frac{10^{2019}}{1+10^{2019}}+\frac{10^{2018}}{1+10^{2018}}+...+\frac{1}{10^{2018}+1}+\frac{1}{10^{2019}+1}+\frac{1}{10^{2020}+1}\\ &=\frac{10^{2020}}{1+10^{2020}}+\frac{1}{10^{2020}+1}+\frac{10^{2019}}{1+10^{2019}}+\frac{1}{10^{2019}+1}+\frac{10^{2018}}{1+10^{2018}}++\frac{1}{10^{2018}+1}...+\frac{1}{1^{0}+1}\\ &=\frac{10^{2020}+1}{10^{2020}+1}+\frac{10^{2019}+1}{10^{2019}+1}+\frac{10^{2018}+1}{10^{2018}+1}+...+\frac{10^{1}+1}{10^{1}+1}+\frac{1}{1^{0}+1}\\ &=\underset{\textrm{sebanyak}\: 2020}{\underbrace{1+1+1+1+1+...+1}}+\frac{1}{2}\\ &=2020,5 \end{aligned} \end{array}
on November 23, 2019 Tidak ada komentar:
Kirimkan Ini lewat EmailBlogThis!Bagikan ke XBerbagi ke FacebookBagikan ke Pinterest

Contoh Soal Persiapan Semester Gasal 2019/2020 Kelas X Peminatan





\begin{array}{ll}\\ \fbox{3}.&\textrm{Jika}\: \: \displaystyle \frac{(0,24)^{3}(0,243)^{5}}{(3,6)^{7}}=\frac{2^{m}3^{n}}{5^{k}}\:, \: \textrm{nilai}\: \: m+n+k\: \: \textrm{adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{A}.&7&&&\textrm{D}.&10\\ \textrm{B}.&8&\textrm{C}.&9&\textrm{E}.&11 \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\displaystyle \frac{(0,24)^{3}(0,243)^{5}}{(3,6)^{7}}&=\displaystyle \frac{\left (\frac{24}{100} \right )^{3}\times \left ( \frac{243}{1000} \right )^{5}}{\left (\frac{36}{10} \right )^{7}}\\ &=\displaystyle \frac{(8\times 3)^{3}\times \left (3^{5} \right )^{5}}{(2^{2}\times 3^{2})^{7}}\times \displaystyle \frac{10^{7}}{100^{3}\times 1000^{5}}\\ &=\displaystyle \frac{(2^{3}\times 3)^{3}\times 3^{25}}{(2^{14}\times 3^{14})}\times \displaystyle \frac{10^{7}}{\left ( 10^{2} \right )^{3}\times \left ( 10^{3} \right )^{5}}\\ &=2^{9-14}.3^{3+25-14}.10^{7-6-15}\\ &=2^{-5}.3^{14}.10^{-14}=2^{-5}.3^{14}.(2.5)^{-14}\\ &=2^{-5-14}.3^{21}.5^{-14}\\ &=\displaystyle \frac{2^{-19}.3^{14}}{5^{14}}\\ \textrm{Sehingga}\: \: &m+n+k=-19+14+14=9 \end{aligned} \end{array}

\begin{array}{ll}\\ \fbox{4}.&\textrm{Perhatikanlah grafik berikut} \end{array}


\begin{array}{ll}\\ .\quad\: \, &\textrm{Rumus fungsi untuk grafik tersebut di ata adalah}\, ....\\ &\begin{array}{llllllll}\\ \textrm{A}.&f(x)=1+3^{2x-1}&&&\textrm{D}.&f(x)=-1+3^{2x-1}\\ \textrm{B}.&f(x)=1-3^{2x-1}&\textrm{C}.&f(x)=1-\left ( \displaystyle \frac{1}{3} \right )^{2x-1}&\textrm{E}.&f(x)=-1+\left ( \displaystyle \frac{1}{3} \right )^{2x-1} \end{array}\\\\ &\textrm{Jawab}:\\ &\textrm{kita uji titik-titiknya, misal di titik}\: \: (1,2)\: \: \textrm{dan}\: \: \left (\displaystyle \frac{1}{2},0 \right )\\ &\begin{aligned}\textrm{A}&\Rightarrow (1,2)\Rightarrow f(1)=1+3^{2.1-1}=1+3=4\neq 2\: \: (\textrm{salah})\\ \textrm{B}&\Rightarrow (1,2)\Rightarrow f(1)=1-3^{2.1-1}=1-3=-2\neq 2\: \: (\textrm{salah})\\ \textrm{C}&\Rightarrow (1,2)\Rightarrow f(1)=1-\left ( \displaystyle \frac{1}{3} \right )^{2.1-1}=1-\frac{1}{3}=\frac{2}{3}\neq 2\: \: (\textrm{salah})\\ \textrm{D}&\Rightarrow (1,2)\Rightarrow f(1)=-1+3^{2.1-1}=-1+3=2= 2\: \: (\textbf{benar})\\ \textrm{E}&\Rightarrow (1,2)\Rightarrow f(1)=-1+\left ( \displaystyle \frac{1}{3} \right )^{2.1-1}=-1+\frac{1}{3}=-\frac{2}{3}\neq 2\: \: (\textrm{salah})\\ \end{aligned} \end{array}





\begin{array}{ll}\\ \fbox{7}.&\textrm{Nilai}\: \: \left ( -\displaystyle \frac{1}{16} \right )^{^{^{\frac{2}{3}}}}=\: ....\\ &\begin{array}{llllll}\\ \textrm{A}.&\displaystyle -0,25&&&\textrm{D}.&\displaystyle 0,35\\\\ \textrm{B}.&\displaystyle -0,16&\textrm{C}.&0,16&\textrm{E}.&\textrm{nilainya tidak real}\\\\ &&&&&(\textbf{\textit{SAT Test Math Level 2}})\\ \end{array}\\\\ &\textrm{Jawab}:\quad \textbf{C}\\ &\begin{aligned}\left ( -\displaystyle \frac{1}{16} \right )^{^{^{\frac{2}{3}}}}&=\sqrt[3]{\left ( -\displaystyle \frac{1}{16} \right )^{2}}\\ &=\sqrt[3]{\displaystyle \frac{1}{256}}\\ &=\sqrt[3]{\displaystyle \frac{1}{64\times 4}}\\ &=\sqrt[3]{\displaystyle \frac{1}{64}}\times \sqrt[3]{\displaystyle \frac{1}{4}}\\ &=\displaystyle \frac{1}{4}\times \sqrt[3]{\displaystyle \frac{1}{4}\times \frac{2}{2}}\\ &=\displaystyle \frac{1}{4}\times \sqrt[3]{\displaystyle \frac{1}{8}}\times \sqrt[3]{2}\\ &=\displaystyle \frac{1}{4}\times \frac{1}{2}\times \sqrt[3]{2}\\ &=\displaystyle \frac{1}{8}\times \sqrt[3]{2}\\ &=(0,125)\times (1,...)\\ &\approx 0,16 \end{aligned} \end{array}



\begin{array}{ll}\\ \fbox{9}.&\textrm{Jika}\: \: \displaystyle \frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}=\displaystyle \frac{a\sqrt{2}+b\sqrt{3}+c\sqrt{5}}{12}\: ,\\\\ &\textrm{maka}\: \: a+b+c=....\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad (\textbf{\textit{UM UGM 2016 Mat Das}})\\ &\begin{array}{llllllll}\\ \textrm{A}.&0&&&\textrm{D}.&3\\ \textrm{B}.&1&\textrm{C}.&2&\textrm{E}.&4 \end{array}\\\\ &\textrm{Jawab}:\qquad \textbf{E}\\ &\begin{aligned}\displaystyle \frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}&=\displaystyle \frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\times \displaystyle \frac{\left ( \sqrt{2}+\sqrt{3}-\sqrt{5} \right )}{\left ( \sqrt{2}+\sqrt{3}-\sqrt{5} \right )}\\ &=\displaystyle \frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\left ( \sqrt{2}+\sqrt{3} \right )^{2}-\left ( \sqrt{5} \right )^{2}}\\ &=\displaystyle \frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{2+3+2\sqrt{2.3}-5}\\ &=\displaystyle \frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{2\sqrt{6}}\times \displaystyle \frac{\sqrt{6}}{\sqrt{6}}\\ &=\displaystyle \frac{\sqrt{12}+\sqrt{18}-\sqrt{30}}{12}\\ &=\displaystyle \frac{2\sqrt{3}+3\sqrt{2}-\sqrt{30}}{12}\\ &=\displaystyle \frac{3\sqrt{2}+2\sqrt{3}-\sqrt{30}}{12}\\ &\quad \begin{cases} a &=3 \\ b &=2 \\ c &=-1 \end{cases}\\ a+b+c&=3+2+(-1)\\ &=4 \end{aligned} \end{array}

\begin{array}{ll}\\ \fbox{10}.&\textrm{Bentuk sederhana dari}\: \: \sqrt{33+\sqrt{800}}-\sqrt{27-2\sqrt{162}}=....\\\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad (\textbf{\textit{SIMAK UI 2012 Mat IPA}})\\ &\begin{array}{llllllll}\\ \textrm{A}.&2-\sqrt{2}&&&\textrm{D}.&2+5\sqrt{2}\\ \textrm{B}.&8-\sqrt{2}&\textrm{C}.&-2+\sqrt{2}&\textrm{E}.&8+5\sqrt{2} \end{array}\\\\ &\textrm{Jawab}:\qquad \textbf{B}\\ &\textrm{misalkan},\\ &\begin{aligned}x&=\sqrt{33+\sqrt{800}}-\sqrt{27-2\sqrt{162}}\\ &=\left ( \sqrt{33+20\sqrt{2}}-\sqrt{27-2.9\sqrt{2}}\: \right )\\ &=\sqrt{33+20\sqrt{2}}-\sqrt{27-18\sqrt{2}}\\ x^{2}&=33+20\sqrt{2}+27-18\sqrt{2}-2\sqrt{\left ( 33+20\sqrt{2} \right )\left ( 27-18\sqrt{2} \right )}\\ &=60+2\sqrt{2}-2\sqrt{33.27-33.18\sqrt{2}+27.20\sqrt{2}-20.18.2}\\ &=60+2\sqrt{2}-2\sqrt{891-720+540\sqrt{2}-594\sqrt{2}}\\ &=60+2\sqrt{2}-2\sqrt{171-54\sqrt{2}}\\ &=60+2\sqrt{2}-2\sqrt{171-2.27\sqrt{2}}\\ &=60+2\sqrt{2}-2\sqrt{171-2\sqrt{27.27}\sqrt{2}}\\ &=60+2\sqrt{2}-2\sqrt{171-2\sqrt{162.9}}\\ &=60+2\sqrt{2}-2\sqrt{162+9-2\sqrt{162.9}}\\ &=60+2\sqrt{2}-2\left ( \sqrt{162}-\sqrt{9} \right )\\ &=60+2\sqrt{2}-2\left ( 9\sqrt{2}-3 \right )\\ x^{2}&=66-16\sqrt{2}\\ x&=\sqrt{66-2.8\sqrt{2}}\\ &=\sqrt{64+2-2\sqrt{64.2}}\\ &=\sqrt{64}-\sqrt{2}\\ &=8-\sqrt{2} \end{aligned} \end{array}



on November 22, 2019 Tidak ada komentar:
Kirimkan Ini lewat EmailBlogThis!Bagikan ke XBerbagi ke FacebookBagikan ke Pinterest

Download Buku BSE (Buku Sekolah Elektronik) Pelajaran Matematika Tingkat SMP/MTs Sampai dengan Tingkat SMA/MA atau Sederajat

 

bse-kelas 7-matematika wagiyo dkk

bse-kelas7-matematika-smp-mts-atik-wintarti-dkk

bse-kelas-7-matematika-oleh-dewi&tri

bse-kelas8-matematika-oleh-dewi&tri

bse-kelas8-matematika-oleh-endah dkk

bse-kelas8-matematika-oleh-nuniek

bse-kelas9-matematika-oleh-nuniek

bse-kelas9-matematika-oleh-sulaiman dkk

bse-kelas9-matematika-olehwahyudin&dwi

bse-kelas11-matematika-bahasa-rosihan&indriyastuti

bse-kelas11-matematika-oleh-pangarso&dewi

bse-kelas11-matematika-bahasa-oleh-siswanto&umi

bse-kelas11-matematika-ipa-nugroho&maryanto

bse-kelas11-matematika-ipa-sutrima&budi

bse-kelas11-matematika-ipa-wahyudin&sudrajat

bse-kelas11-matematika-ips-siswanto&umi

bse-kelas11-matematika-ips-sutrima&budi

bse-kelas11-matematika-ips-sri&diah



bse-kelas11-matematika-smk-mak-sumadi dkk

bse-kelas12-matematika-bahasa-rosihan&indriyastuti

bse-kelas12-matematika-bahasa-siswanto&umi

bse-kelas12-matematika-bahasa-geri dkk

bse-kelas12-matematika-bahasa-pangarso&dewi

bse-kelas12-matematika-bahasa-sutrima&budi

bse-kelas12-matematika-ipa-pesta&cecep

bse-kelas12-matematika-ips-siswanto&umi




















































on November 19, 2019 Tidak ada komentar:
Kirimkan Ini lewat EmailBlogThis!Bagikan ke XBerbagi ke FacebookBagikan ke Pinterest
Label: Resources for learning mathematics
Postingan Lebih Baru Postingan Lama Beranda
Langganan: Postingan (Atom)

Mengenai Saya

Foto saya
Ahmad Thohir
Lihat profil lengkapku

Pengikut

Translate

Total Tayangan Halaman

  • ►  2024 (39)
    • ►  November (5)
    • ►  Juli (3)
    • ►  Mei (1)
    • ►  April (1)
    • ►  Maret (8)
    • ►  Februari (21)
  • ►  2023 (36)
    • ►  Oktober (1)
    • ►  Juni (2)
    • ►  Mei (4)
    • ►  Maret (7)
    • ►  Februari (4)
    • ►  Januari (18)
  • ►  2022 (191)
    • ►  Desember (7)
    • ►  November (7)
    • ►  Oktober (7)
    • ►  September (2)
    • ►  Agustus (11)
    • ►  Juli (2)
    • ►  Juni (5)
    • ►  Mei (12)
    • ►  April (21)
    • ►  Maret (52)
    • ►  Februari (39)
    • ►  Januari (26)
  • ►  2021 (232)
    • ►  Desember (47)
    • ►  November (53)
    • ►  Oktober (27)
    • ►  September (5)
    • ►  Agustus (11)
    • ►  Juli (14)
    • ►  April (7)
    • ►  Maret (22)
    • ►  Februari (27)
    • ►  Januari (19)
  • ►  2020 (151)
    • ►  Desember (6)
    • ►  November (32)
    • ►  Oktober (32)
    • ►  September (60)
    • ►  Agustus (16)
    • ►  April (2)
    • ►  Maret (2)
    • ►  Januari (1)
  • ▼  2019 (14)
    • ▼  November (14)
      • Lanjutan 1 Contoh Soal Persiapan Semester Gasal 20...
      • Contoh Soal Persiapan Semester Gasal 2019/2020 Kel...
      • Lanjutan 2 Contoh Soal Persiapan Semester Gasal 20...
      • Lanjutan 1 Contoh Soal Persiapan Semester Gasal 20...
      • Contoh Soal Persiapan Semester Gasal 2019/2020 Kel...
      • Download Buku BSE (Buku Sekolah Elektronik) Pelaja...
      • Turunan (Kelas XII MIPA)
      • Identitas Trigonometri
      • Lanjuta Rumus trigonometri
      • Rumus Trigonometri Jumlah dan Selisih Dua Sudut
      • Ukuran Penyebaran Data
      • Ukuran Letak Data
      • Ukuran Data Memusat
      • STATISTIKA (KELAS XII WAJIB K13) A. Pendahuluan S...
  • ►  2016 (5)
    • ►  September (3)
    • ►  Februari (2)
  • ►  2014 (3)
    • ►  Desember (3)

Cari Blog Ini

  • Beranda

KELAS XII - KUMPULAN MATERI MATEMATIKA PEMINATAN MA-SMA (KURTILAS REVISI)

Gambar tema oleh luoman. Diberdayakan oleh Blogger.