Lanjutan 1 Contoh Soal Persiapan Semester Gasal 2019/2020 Kelas X Peminatan
















\begin{array}{ll}\\ \fbox{15}.&\textrm{Solusi untuk persamaan}\: \: 3^{2x+1}=81^{x-2}\: \: \textrm{adalah}\: ....\\ &\begin{array}{lllllllll}\\ \textrm{A}.&0&&&\textrm{D}.&4\displaystyle \frac{1}{2}\\\\ \textrm{B}.&2&\textrm{C}.&4&\textrm{E}.&16 \end{array}\\\\ &\textrm{Jawab}:\quad \textbf{D}\\ &\begin{array}{|c|c|}\hline \begin{aligned}3^{2x+1}&=81^{x-2}\\ \left (3^{2x} \right ).3^{1}&=\left (3^{4} \right )^{x-2}\\ 3.\left (3^{2x} \right )&=3^{4x}.3^{-8}\\ 3.\left (3^{2x} \right )&=\displaystyle \frac{\left (3^{2x} \right )^{2}}{3^{8}}\\ 0&=\displaystyle \frac{\left (3^{2x} \right )^{2}}{3^{8}}-3\left ( 3^{2x} \right )\\ 0&=\left ( 3^{2x} \right )^{2}-3^{9}.\left ( 3^{2x} \right )\\ 0&=\left (3^{2x} \right )\left ( \left ( 3^{2x} \right )-3^{9} \right ) \end{aligned} &\begin{aligned}\textbf{atau}\qquad\qquad\qquad&\\ \left ( 3^{2x} \right )^{2}-27.\left ( 3^{2x} \right )&=0\\ \left (3^{2x} \right )\left ( \left ( 3^{2x} \right )-3^{9} \right )&=0\\ 3^{2x}=0\: \: \textrm{atau}\: \: 3^{2x}&=3^{9}\\ (\textrm{tm})\quad \textrm{atau}\: \: 3^{2x}&=3^{9}\\ 2^{x}&=9\\ x&=\displaystyle \frac{9}{2}\\ \textrm{atau}\: \: x&=4\displaystyle \frac{1}{2} \end{aligned} \\\hline \end{array} \end{array}



\begin{array}{ll}\\ \fbox{17}.&\textrm{Jika}\: \: \sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}=\sqrt{a}+\sqrt{b}+\sqrt{c},\\ &\textrm{maka nilai dari}\: \: \left ( a+b-c \right )^{abc}=....\\ &\begin{array}{lllllllll}\\ \textrm{A}.&1000&&&\textrm{D}.&-1\\ \textrm{B}.&1&\textrm{C}.&0&\textrm{E}.&-1000 \end{array}\\\\ &\textrm{Jawab}:\quad \textbf{C}\\ &\begin{aligned}\begin{aligned}\left (\sqrt{2}+\sqrt{3}+\sqrt{5} \right )^{2}&=\left (\sqrt{2}+\sqrt{3}+\sqrt{5} \right )\times \left (\sqrt{2}+\sqrt{3}+\sqrt{5} \right )\\ &=\sqrt{2.2}+\sqrt{2.3}+\sqrt{2.5}+\sqrt{3.2}+\sqrt{3.3}\\ &\qquad\qquad+\sqrt{3.5}+\sqrt{5.2}+\sqrt{5.3}+\sqrt{5.5}\\ &=2+2\sqrt{6}+2\sqrt{10}+3+2\sqrt{15}+5\\ &=2+3+5+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}\\ &=10+\sqrt{2^{2}.6}+\sqrt{2^{2}.10}+\sqrt{2^{2}.15}\\ &=10+\sqrt{24}+\sqrt{40}+\sqrt{60}\\ \sqrt{2}+\sqrt{3}+\sqrt{5}&=\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\\ &\begin{cases} a &=2 \\ b & =3 \\ c &=5 \end{cases}.\qquad \textrm{sesuai dengan urutannya}\\ \textrm{Sehingga nilai}\qquad &\\ \left ( a+b-c \right )^{abc}&=\left ( 2+3-5 \right )^{2.3.5}\\ &=0^{30}\\ &=0 \end{aligned} \end{aligned} \end{array}





\begin{array}{ll}\\ \fbox{20}.&\textrm{Nilai eksak dari}\\ &\displaystyle \frac{1}{10^{-2020}+1}+\frac{1}{10^{-2019}+1}+\frac{1}{10^{-2018}+1}+...+\displaystyle \frac{1}{10^{2018}+1}+\frac{1}{10^{2019}+1}+\frac{1}{10^{2020}+1} \\ &\begin{array}{lllllllll}\\ \textrm{A}.&2020&&&\textrm{D}.&2021,5\\ \textrm{B}.&2020,5&\textrm{C}.&2021&\textrm{E}.&2022 \end{array}\\\\ &\textrm{Jawab}:\quad \textbf{B}\\ &\begin{aligned}\textrm{Misal},\: \: x&=\frac{1}{10^{-2020}+1}+\frac{1}{10^{-2019}+1}+\frac{1}{10^{-2018}+1}+...+\frac{1}{10^{2018}+1}+\frac{1}{10^{2019}+1}+\frac{1}{10^{2020}+1}\\ \textrm{maka},\, \: x&=\frac{1}{\frac{1}{10^{2020}}+1}+\frac{1}{\frac{1}{10^{2019}}+1}+\frac{1}{\frac{1}{10^{2018}}+1}+...+\frac{1}{10^{2018}+1}+\frac{1}{10^{2019}+1}+\frac{1}{10^{2020}+1}\\ &=\frac{10^{2020}}{1+10^{2020}}+\frac{10^{2019}}{1+10^{2019}}+\frac{10^{2018}}{1+10^{2018}}+...+\frac{1}{10^{2018}+1}+\frac{1}{10^{2019}+1}+\frac{1}{10^{2020}+1}\\ &=\frac{10^{2020}}{1+10^{2020}}+\frac{1}{10^{2020}+1}+\frac{10^{2019}}{1+10^{2019}}+\frac{1}{10^{2019}+1}+\frac{10^{2018}}{1+10^{2018}}++\frac{1}{10^{2018}+1}...+\frac{1}{1^{0}+1}\\ &=\frac{10^{2020}+1}{10^{2020}+1}+\frac{10^{2019}+1}{10^{2019}+1}+\frac{10^{2018}+1}{10^{2018}+1}+...+\frac{10^{1}+1}{10^{1}+1}+\frac{1}{1^{0}+1}\\ &=\underset{\textrm{sebanyak}\: 2020}{\underbrace{1+1+1+1+1+...+1}}+\frac{1}{2}\\ &=2020,5 \end{aligned} \end{array}

Tidak ada komentar:

Posting Komentar

Informasi