Aturan Pencacahan (Materi Peluang)

 A. Pendahuluan

A. 1 Kombinatorial

Dalam matematika ada cabang ilmu yang mengkhususkan mempelajari tentang pengaturan objek-objek. Cabang matematika ini selanjutnya dinamakan Kombinatorial. Hasil dari mempelajari bagian ini adalah diperoleh jumlah cara pengaturan objek-objek tertentu di dalam himpunannya. 

Sebagai contoh nomor plat mobil di negara X terdiri atas 4 angka diikuti dengan 2 huruf. Angka pertama tidak boleh 0. Berapa banyak nomor plat mobil yang dapat dibuat?

Sebagai contoh yang lain sandi-lewat (password) sistem komputer panjangnya 6 sampai 8 karakter. Tiap karakter sendiri boleh berupa angka atau huruf, dengan huruf besar maupun huruf kecil tidak dibedakan. Berapa banyak sandi-lewat (password) yang dapat dibuat?

A. 2 Percobaan

Hasil dari Kombinatorial ini diperoleh dari percobaan(experiment). Percobaan dalam pengertian di sini adalah Proses yang berupa tindakan yang dapat diamati. Sebagai misal dalam percobaan melempar sebuah dadu, maka hasil yang mungkin adalah munculnya salah satu muka dadu yang enam, yaitu: 1,2,3,4,5, dan 6. Setiap kali kita melempar dapat dipastikan salah satu muka dadu akan muncul

CONTOH SOAL

1.Pada saat melempar sebuah koin, maka akandidapatkan 2 kemungkinan, yaitu mukagambar (G) atau muka angka (A)2.Ketika melempar dua koin sekaligus, maka akan didapatkan kemungkinan 4 muka koin4 kemungkinan itu yaitu: AA, AG, GA, dan GG3.Selanjutnya saat kita melempar 3 koin sekaligusmaka kita akan mendapatkan 8 kemungkinanmuka koin, yaitu:AAA, AAG, AGA, AGG, GAA, GAG, GGA,dan GGG4.Contoh yang lain saat kita melempar dua buahdadu, maka kita akan mendapatkan 36 kemungkinanmuka dadu

Untuk uraian contoh pada no.3 dan 4 disertakan tabel berikut

34{A{A{A=AAAG=AAGG{A=AGAG=AGGG{A{A=GAAG=GAGG{A=GGAG=GGG1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)n(S)=8n(S)=36

Sebagai catatan kemungkinan-kemungkinan yang muncul dalam setaip tindakan pada 4 contoh di atas selanjutnya akan disebut sebagai titik sampel.

B. Kaidah Pencacahan

Dalam kombinatorial kita harus melakukan perhitungan (counting) untuk mendapatkan semua kemungkinan dari pengaturan objekgar hasilnya didaptkan valid. Dua kaidah dasar yang digunakan dalam hal ini adalah adalah kaidah perkalian (rule of product) dan kaidah penjumlahan (rule of sum). Kedua kaidah tersebut nantinya akan selalu digunakan secara terpisah atau secara gabungan tergantung kondisi yang diinginkan dalam penentuan aturan pengisian tempat.

 B. 1 Kaidah Perkalian

{Kaidah PerkalianJika percobaan 1 mendapat hasilm,percobaan 2 mendapatkan hasiln,maka jika percobaan 1 dan 2 dilakukan,maka akan mendapatkan hasilm×nkemungkinanKaidah PenjumlahJika percobaan 1 mendapat hasilm,percobaan 2 mendapatkan hasiln,maka jika hanyasatu percobaansajayang dilakukan (percobaan 1 atau percobaan 2),maka akan mendapatkan hasilm+nkemungkinan

CONTOH SOAL

1.Sekumpulan pelajar terdiri dari 5 anak putradan 4 anak putri. Tentukanlah jumlah cara memilihsatu orang wakil siswa dan satu orang wakil siswi?Jawab:ada 5 kemungkinan memilih seorang wakil siswadan ada 4 kemungkinan memilih wakil siswi.Jika 2 orang wakil harus dipilih yang terdiridari 1 siswa dan 1 siswi, maka jumlahkemungkinan perwakilan tersebut adalah yangdapat dipilih adalah 5 x 4 = 20 cara

2.Tentukanlah ruang sampel dan banyaknyaanggota untuk percobaana.melambungkan sebuah koin sebanyak 3 kalib.melambungkan dua buah dadu sebanyak sekaliJawab:Jika S adalah ruang sampel dan n(S) adalahbanyak anggota ruang sampel, makaa.karena muka koin ada 2, maka n(S)n(S)=2×2×2=23=8b.karena muka dadu ada 6, maka n(S)n(S)=6×6=62=36Dan berikut ilustrasi untuk seluruh ruangsampelnya untuk kedua kasus di atasab{A{A{A=AAAG=AAGG{A=AGAG=AGGG{A{A=GAAG=GAGG{A=GGAG=GGG1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)n(S)=8n(S)=36

Catatan :

Sebuah koin di lempar 3 kali sama dengan hasilnya untuk ruang sampel 3 buah koin dilempar sekali. Demikian juga sebuah dadu diundi 2 kali akan sama hasilnya dengan 2 buah dadi diundi sekali.

3.Sekumpulan pelajar terdiri dari 5 anak putra dan4 anak putri. Tentukanlah jumlah cara memilih satuorang wakil pelajar tersebut(tidak masalah putra atau putri)?Jawab:ada 5 kemungkinan memilih seorang wakil siswa danada 4 kemungkinan memilih wakil siswi. Jikahanya 1 orang wakil yang harus dipilih(tidak peduli putra atau putri),maka banyak cara memilih adalah 5 + 4 = 9 cara.

4.Pada suatu rak baca pada suatu ruangan terdapat 4 buku, 2 koran, dan 10 majalah. Tentukan banyak cara seseorang  di ruangan tersebut mengambilsalah satu bacaan yang ada?Jawab:ada 4 kemungkinan memilih buku danada 2 kemungkinan memilih koran sertaada 10 kemungkinan memilih majalahJika hanya 1 bacaan yang bisa dipilih,maka banyak cara memilih bacaan tersebutadalah 4 + 2 + 10 = 16 cara.

5.Seseorang hendap bepergian dengan menggunakankendaraanya. Ia memiliki 1 mobil, 3 sepeda motor, dan 5 sepeda. Tentukan ada berapa banyak cara seseorang  itu menggunakan kendaraanya?Jawab:hanya ada 1 kemungkinan memilih mobil danada 3 kemungkinan memilih sepeda motor sertaada 5 kemungkinan ia mengunakan sepedaJika hanya 1 kendaraan saja yang dipilih,maka banyak cara memilih kendaraan tersebutadalah 1 + 3 + 5 = 9 cara.

6.Sebuah bilangan dibentuk dari angka-angka1, 2, 3, 4, 5, 6, 7, 8, dan 9. Jika pengulangantidak diperbolehkan, tentukan banyaknya bilangana.yang terdiri dari 1 angka dan kurang dari 5b.yang terdiri dari 2 angka dan kurang dari 50c.yang terdiri dari 3 angka dan kurang dari 500d.yang terdiri dari 4 angka dan kurang dari 5000e.yang terdiri dari 5 angka dan kurang dari 50000f.yang terdiri dari 6 angka dan kurang dari 500000 dan habis dibagi 5Jawab:a.jelas ada 4 angka yang memenuhi, yaitu: 1, 2, 3, dan 4b.2 angka misalkan AB, posisi A dapat diisi dengan 4 cara dan posisi B dapatdiisi dengan 8 cara, karena setelah diisikan ke A angka tinggal 8 buah dansemuanya memiliki kesempatan yang sama untuk diisikan ke B.sehingga AB dapat diisi dengan 4 x 8 = 32 cara.c.3 angka misalkan ABC, posisi A dapat diisi dengan 4 cara, posisi B dapatdiisi dengan 8 cara, dan posisi C dapat diisi dengan 7 cara.sehingga ABC dapat diisi dengan 4 x 8 x 7 = 224 cara.Untuk jawaban d, e, dan f silahkan dicoba sendiri sebagai latihan.

Perhatikan gambar berikut untuk menjawab soal no. 7 dan 8

7.Perhatikan gambar di atas. Jika dari kota Ake kota B terdapat 4 jalur yang dapat ditempuhdan dari kota B ke kota C terdapat 3 jalur yangada, maka banyak jalur yang bisa dilalui seseorang dari kota A ke kota C dengan melalui kota B ?Jawab:Dari kota A ke B ada 4 jalurdari kota B ke C ada 3 jalurmaka banyak jalur dari kota A ke C melalui Badalah 4 x 3 = 12 jalur.

8.Perhatikan soal no, 7 di atas. Jika orang tersebutpulang ke kota A dan melalui B dengan melaluijalur yang berbeda dengan saat ia pergi, makabanyak jalur yang bisa dilalui orang tersebutadalah?Jawab:Saat pergi dari kota A ke kota C melalui Bdari kota A ke B ada 4 pilihan jalur (dipilih 1)dari kota B ke C ada 3 pilihan jalur (dipilih 1)maka banyak jalur dari kota A ke C melalui Badalah 4 x 3 = 12 jalurSaat pulang dari kota C ke kota A melalui Bdari kota C ke B ada 2 pilihan jalur (1 jalur sudah digunakan sebelumnya saat pergi)dari kota B ke A ada 3 pilihan jalur(1 jalur sudah digunakan sebelumnya saat pergi)maka banyak jalur pulang dari kota C ke A melalui Badalah 2 x 3 = 6 jalurSehingga total jalur pergi-pulangterdapat sebanyak 12 x 6 = 72 jalur berbedayang bisa dilalui orang tersebut.


DAFTAR PUSTAKA

  1. Munir, R. 2012. Matematika Diskrit. Bandung: IMFORMATIKA.


Tidak ada komentar:

Posting Komentar

Informasi