$\color{red}\textrm{A. Pendahuluan}$
$\color{red}\textrm{A. 1 Kombinatorial}$
Dalam matematika ada cabang ilmu yang mengkhususkan mempelajari tentang pengaturan objek-objek. Cabang matematika ini selanjutnya dinamakan Kombinatorial. Hasil dari mempelajari bagian ini adalah diperoleh jumlah cara pengaturan objek-objek tertentu di dalam himpunannya.
Sebagai contoh nomor plat mobil di negara X terdiri atas 4 angka diikuti dengan 2 huruf. Angka pertama tidak boleh 0. Berapa banyak nomor plat mobil yang dapat dibuat?
Sebagai contoh yang lain sandi-lewat (password) sistem komputer panjangnya 6 sampai 8 karakter. Tiap karakter sendiri boleh berupa angka atau huruf, dengan huruf besar maupun huruf kecil tidak dibedakan. Berapa banyak sandi-lewat (password) yang dapat dibuat?
$\color{red}\textrm{A. 2 Percobaan}$
Hasil dari Kombinatorial ini diperoleh dari percobaan(experiment). Percobaan dalam pengertian di sini adalah Proses yang berupa tindakan yang dapat diamati. Sebagai misal dalam percobaan melempar sebuah dadu, maka hasil yang mungkin adalah munculnya salah satu muka dadu yang enam, yaitu: 1,2,3,4,5, dan 6. Setiap kali kita melempar dapat dipastikan salah satu muka dadu akan muncul
$\LARGE\colorbox{yellow}{CONTOH SOAL}$
$\begin{array}{ll}\\ 1.&\textrm{Pada saat melempar sebuah koin, maka akan}\\ &\textrm{didapatkan 2 kemungkinan, yaitu muka}\\ &\textrm{gambar (G) atau muka angka (A)}\\ 2.&\textrm{Ketika melempar dua koin sekaligus, maka }\\ &\textrm{akan didapatkan kemungkinan 4 muka koin}\\ &\textrm{4 kemungkinan itu yaitu: AA, AG, GA, dan GG}\\ 3.&\textrm{Selanjutnya saat kita melempar 3 koin sekaligus}\\ &\textrm{maka kita akan mendapatkan 8 kemungkinan}\\ &\textrm{muka koin, yaitu}:\\ &\textrm{AAA, AAG, AGA, AGG, GAA, GAG, GGA,}\\ &\textrm{dan GGG}\\ 4.&\textrm{Contoh yang lain saat kita melempar dua buah}\\ &\textrm{dadu, maka kita akan mendapatkan 36 kemungkinan}\\ &\textrm{muka dadu} \end{array}$
Untuk uraian contoh pada no.3 dan 4 disertakan tabel berikut
$\begin{array}{|c|c|}\hline \textrm{3}&\textrm{4}\\\hline \color{red}\left\{\begin{matrix} A\left\{\begin{matrix} A\left\{\begin{matrix} A&=AAA\\ \\ G&=AAG \end{matrix}\right.\\ \\ G\left\{\begin{matrix} A&=AGA\\ \\ G&=AGG \end{matrix}\right. \end{matrix}\right.\\ \\ G\left\{\begin{matrix} A\left\{\begin{matrix} A&=GAA\\ \\ G&=GAG \end{matrix}\right.\\ \\ G\left\{\begin{matrix} A&=GGA\\ \\ G&=GGG \end{matrix}\right. \end{matrix}\right. \end{matrix}\right. &\color{blue}\begin{array}{|c|c|c|c|c|c|c|}\hline \setminus&1&2&3&4&5&6\\\hline 1&(1,1)&(1,2)&(1,3)&(1,4)&(1,5)&(1,6)\\\hline 2&(2,1)&(2,2)&(2,3)&(2,4)&(2,5)&(2,6)\\\hline 3&(3,1)&(3,2)&(3,3)&(3,4)&(3,5)&(3,6)\\\hline 4&(4,1)&(4,2)&(4,3)&(4,4)&(4,5)&(4,6)\\\hline 5&(5,1)&(5,2)&(5,3)&(5,4)&(5,5)&(5,6)\\\hline 6&(6,1)&(6,2)&(6,3)&(6,4)&(6,5)&(6,6)\\\hline \end{array} \\\hline \textrm{n}(\textrm{S})=8&\textrm{n}(\textrm{S})=36\\\hline \end{array}$
Sebagai catatan kemungkinan-kemungkinan yang muncul dalam setaip tindakan pada 4 contoh di atas selanjutnya akan disebut sebagai titik sampel.
$\color{red}\textrm{B. Kaidah Pencacahan}$
Dalam kombinatorial kita harus melakukan perhitungan (counting) untuk mendapatkan semua kemungkinan dari pengaturan objekgar hasilnya didaptkan valid. Dua kaidah dasar yang digunakan dalam hal ini adalah adalah kaidah perkalian (rule of product) dan kaidah penjumlahan (rule of sum). Kedua kaidah tersebut nantinya akan selalu digunakan secara terpisah atau secara gabungan tergantung kondisi yang diinginkan dalam penentuan aturan pengisian tempat.
$\color{red}\textrm{B. 1 Kaidah Perkalian}$
$\begin{cases} \color{red}\Rightarrow &\begin{array}{|c|}\hline \textrm{Kaidah Perkalian}\\\hline \begin{aligned}&\textrm{Jika percobaan 1 mendapat hasil}\: \: m,\\ & \textrm{percobaan 2 mendapatkan hasil}\: n,\\ & \textrm{maka jika percobaan 1 dan 2 dilakukan},\\ &\textrm{maka akan mendapatkan hasil} \: \: m \times n \\ &\textrm{kemungkinan} \end{aligned}\\\hline \end{array} \\\\\\ \color{blue}\Rightarrow &\begin{array}{|c|}\hline \textrm{Kaidah Penjumlah}\\\hline \begin{aligned}&\textrm{Jika percobaan 1 mendapat hasil}\: \: m,\\ & \textrm{percobaan 2 mendapatkan hasil}\: \: n,\\ & \textrm{maka jika hanya}\: \: \color{magenta}\textbf{satu percobaan}\: \: \color{black}\textrm{saja}\\ & \textrm{yang dilakukan (percobaan 1 atau percobaan 2)},\\ & \textrm{maka akan mendapatkan hasil}\: \: m + n\\ & \textrm{kemungkinan} \end{aligned}\\\hline \end{array} \end{cases}$
$\LARGE\colorbox{yellow}{CONTOH SOAL}$
$\begin{array}{ll}\\ 1.&\textrm{Sekumpulan pelajar terdiri dari 5 anak putra}\\ & \textrm{dan 4 anak putri. Tentukanlah jumlah cara memilih}\\ & \textrm{satu orang wakil siswa dan satu orang wakil siswi}?\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{ada 5 kemungkinan memilih seorang wakil siswa}\\ & \textrm{dan ada 4 kemungkinan memilih wakil siswi}.\\ & \textrm{Jika 2 orang wakil harus dipilih yang terdiri}\\ & \textrm{dari 1 siswa dan 1 siswi, maka jumlah}\\ & \textrm{kemungkinan perwakilan tersebut adalah yang}\\ & \textrm{dapat dipilih adalah 5 x 4 = 20 cara} \end{array}$
$\begin{array}{ll}\\ 2.&\textrm{Tentukanlah ruang sampel dan banyaknya}\\ &\textrm{anggota untuk percobaan}\\ &\textrm{a}.\quad \textrm{melambungkan sebuah koin sebanyak 3 kali}\\ &\textrm{b}.\quad \textrm{melambungkan dua buah dadu sebanyak sekali}\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{Jika S adalah ruang sampel dan n(S) adalah}\\ &\textrm{banyak anggota ruang sampel, maka}\\ &\textrm{a}.\quad \textrm{karena muka koin ada 2, maka n(S)}\\ &\qquad n(S)=2\times 2\times 2=2^{3}=8\\ &\textrm{b}.\quad \textrm{karena muka dadu ada 6, maka n(S)}\\ &\qquad n(S)=6\times 6=6^{2}=36\\ &\textrm{Dan berikut ilustrasi untuk seluruh ruang}\\ &\color{red}\textrm{sampelnya untuk kedua kasus di atas}\\ &\begin{array}{|c|c|}\hline \textrm{a}&\textrm{b}\\\hline \left\{\begin{matrix} A\left\{\begin{matrix} A\left\{\begin{matrix} A&=AAA\\ \\ G&=AAG \end{matrix}\right.\\ \\ G\left\{\begin{matrix} A&=AGA\\ \\ G&=AGG \end{matrix}\right. \end{matrix}\right.\\ \\ G\left\{\begin{matrix} A\left\{\begin{matrix} A&=GAA\\ \\ G&=GAG \end{matrix}\right.\\ \\ G\left\{\begin{matrix} A&=GGA\\ \\ G&=GGG \end{matrix}\right. \end{matrix}\right. \end{matrix}\right. &\begin{array}{|c|c|c|c|c|c|c|}\hline \setminus&1&2&3&4&5&6\\\hline 1&(1,1)&(1,2)&(1,3)&(1,4)&(1,5)&(1,6)\\\hline 2&(2,1)&(2,2)&(2,3)&(2,4)&(2,5)&(2,6)\\\hline 3&(3,1)&(3,2)&(3,3)&(3,4)&(3,5)&(3,6)\\\hline 4&(4,1)&(4,2)&(4,3)&(4,4)&(4,5)&(4,6)\\\hline 5&(5,1)&(5,2)&(5,3)&(5,4)&(5,5)&(5,6)\\\hline 6&(6,1)&(6,2)&(6,3)&(6,4)&(6,5)&(6,6)\\\hline \end{array} \\\hline \textrm{n}(\textrm{S})=8&\textrm{n}(\textrm{S})=36\\\hline \end{array} \end{array}$
Catatan :
Sebuah koin di lempar 3 kali sama dengan hasilnya untuk ruang sampel 3 buah koin dilempar sekali. Demikian juga sebuah dadu diundi 2 kali akan sama hasilnya dengan 2 buah dadi diundi sekali.
$\begin{array}{ll}\\ 3.&\textrm{Sekumpulan pelajar terdiri dari 5 anak putra dan}\\ & \textrm{4 anak putri. Tentukanlah jumlah cara memilih satu}\\ & \textrm{orang wakil pelajar tersebut(tidak masalah putra atau putri)}?\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{ada 5 kemungkinan memilih seorang wakil siswa dan}\\ &\textrm{ada 4 kemungkinan memilih wakil siswi. Jika}\\ &\textrm{hanya 1 orang wakil yang harus dipilih}\\ & \textrm{(tidak peduli putra atau putri)},\\ & \textrm{maka banyak cara memilih adalah 5 + 4 = 9 cara} \end{array}$.
$\begin{array}{ll}\\ 4.&\textrm{Pada suatu rak baca pada suatu ruangan terdapat }\\ & \textrm{4 buku, 2 koran, dan 10 majalah. Tentukan banyak }\\ & \textrm{cara seseorang di ruangan tersebut mengambil}\\ &\textrm{salah satu bacaan yang ada}?\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{ada 4 kemungkinan memilih buku dan}\\ &\textrm{ada 2 kemungkinan memilih koran serta}\\ &\textrm{ada 10 kemungkinan memilih majalah}\\ &\textrm{Jika hanya 1 bacaan yang bisa dipilih},\\ & \textrm{maka banyak cara memilih bacaan tersebut}\\ &\textrm{adalah 4 + 2 + 10 = 16 cara} \end{array}$.
$\begin{array}{ll}\\ 5.&\textrm{Seseorang hendap bepergian dengan menggunakan}\\ & \textrm{kendaraanya. Ia memiliki 1 mobil, 3 sepeda motor, }\\ & \textrm{dan 5 sepeda. Tentukan ada berapa banyak cara }\\ &\textrm{seseorang itu menggunakan kendaraanya}?\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{hanya ada 1 kemungkinan memilih mobil dan}\\ &\textrm{ada 3 kemungkinan memilih sepeda motor serta}\\ &\textrm{ada 5 kemungkinan ia mengunakan sepeda}\\ &\textrm{Jika hanya 1 kendaraan saja yang dipilih},\\ & \textrm{maka banyak cara memilih kendaraan tersebut}\\ &\textrm{adalah 1 + 3 + 5 = 9 cara} \end{array}$.
$\begin{array}{ll}\\ 6.&\textrm{Sebuah bilangan dibentuk dari angka-angka}\\ & \textrm{1, 2, 3, 4, 5, 6, 7, 8, dan 9. Jika pengulangan} \\ &\textrm{tidak diperbolehkan, tentukan banyaknya bilangan}\\ &\textrm{a}.\quad \textrm{yang terdiri dari 1 angka dan kurang dari 5}\\ &\textrm{b}.\quad \textrm{yang terdiri dari 2 angka dan kurang dari 50}\\ &\textrm{c}.\quad \textrm{yang terdiri dari 3 angka dan kurang dari 500}\\ &\textrm{d}.\quad \textrm{yang terdiri dari 4 angka dan kurang dari 5000}\\ &\textrm{e}.\quad \textrm{yang terdiri dari 5 angka dan kurang dari 50000}\\ &\textrm{f}.\quad \textrm{yang terdiri dari 6 angka dan kurang dari 500000 dan habis dibagi 5}\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{a}.\quad \textrm{jelas ada 4 angka yang memenuhi, yaitu: 1, 2, 3, dan 4}\\ &\textrm{b}.\quad \textrm{2 angka misalkan AB, posisi A dapat diisi dengan 4 cara dan posisi B dapat}\\ &\qquad \textrm{diisi dengan 8 cara, karena setelah diisikan ke A angka tinggal 8 buah dan}\\ &\qquad \textrm{semuanya memiliki kesempatan yang sama untuk diisikan ke B}.\\ &\qquad \textrm{sehingga AB dapat diisi dengan 4 x 8 = 32 cara}.\\ &\textrm{c}.\quad \textrm{3 angka misalkan ABC, posisi A dapat diisi dengan 4 cara, posisi B dapat}\\ &\qquad \textrm{diisi dengan 8 cara, dan posisi C dapat diisi dengan 7 cara}.\\ &\qquad \textrm{sehingga ABC dapat diisi dengan 4 x 8 x 7 = 224 cara}.\\ &\\ &\textrm{Untuk jawaban d, e, dan f silahkan dicoba sendiri sebagai latihan} \end{array}$.
Perhatikan gambar berikut untuk menjawab soal no. 7 dan 8
$\begin{array}{ll}\\ 7.&\textrm{Perhatikan gambar di atas. Jika dari kota A}\\ & \textrm{ke kota B terdapat 4 jalur yang dapat ditempuh}\\ & \textrm{dan dari kota B ke kota C terdapat 3 jalur yang}\\ &\textrm{ada, maka banyak jalur yang bisa dilalui seseorang }\\ &\textrm{dari kota A ke kota C dengan melalui kota B }?\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{Dari kota A ke B ada 4 jalur}\\ &\textrm{dari kota B ke C ada 3 jalur}\\ &\textrm{maka banyak jalur dari kota A ke C melalui B}\\ &\textrm{adalah 4 x 3 = 12 jalur} \end{array}$.
$\begin{array}{ll}\\ 8.&\textrm{Perhatikan soal no, 7 di atas. Jika orang tersebut}\\ & \textrm{pulang ke kota A dan melalui B dengan melalui}\\ & \textrm{jalur yang berbeda dengan saat ia pergi, maka}\\ &\textrm{banyak jalur yang bisa dilalui orang tersebut}\\ &\textrm{adalah}?\\\\ &\color{blue}\textbf{Jawab}:\\ &\color{red}\textrm{Saat pergi dari kota A ke kota C melalui B}\\ &\textrm{dari kota A ke B ada 4 pilihan jalur (dipilih 1)}\\ &\textrm{dari kota B ke C ada 3 pilihan jalur (dipilih 1)}\\ &\textrm{maka banyak jalur dari kota A ke C melalui B}\\ &\textrm{adalah 4 x 3 = 12 jalur}\\ &\color{red}\textrm{Saat pulang dari kota C ke kota A melalui B}\\ &\textrm{dari kota C ke B ada 2 pilihan jalur }\\ &(\textrm{1 jalur sudah digunakan sebelumnya saat pergi})\\ &\textrm{dari kota B ke A ada 3 pilihan jalur}\\ &(\textrm{1 jalur sudah digunakan sebelumnya saat pergi})\\ &\textrm{maka banyak jalur pulang dari kota C ke A melalui B}\\ &\textrm{adalah 2 x 3 = 6 jalur}\\ &\color{red}\textrm{Sehingga total jalur pergi-pulang}\\ &\textrm{terdapat sebanyak 12 x 6 = 72 jalur berbeda}\\ &\textrm{yang bisa dilalui orang tersebut} \end{array}$.
DAFTAR PUSTAKA
- Munir, R. 2012. Matematika Diskrit. Bandung: IMFORMATIKA.
Tidak ada komentar:
Posting Komentar
Informasi