Tampilkan postingan dengan label Practice Question 10 Preparation for PAS Odd Mathematics Specialization Class XI (Equations and Formulas for Trigonometric Sum and Difference). Tampilkan semua postingan
Tampilkan postingan dengan label Practice Question 10 Preparation for PAS Odd Mathematics Specialization Class XI (Equations and Formulas for Trigonometric Sum and Difference). Tampilkan semua postingan

Latihan Soal 10 Persiapan PAS Gasal Matematika Peminatan Kelas XI (Persamaan dan Rumus Jumlah dan Selisih Trigonometri)

91.Bentuk sederhana dari4sin(14π+x)cos(14πx)adalah....a.2+2sin2xd.2+2sinxb.2+sin2xe.2+sinxc.2sin2xJawab:4sin(14π+x)cos(14πx)=2(sin(12π)+sin(2x))=2(1+sin2x)=2+2sin2x.

92.Bentuk sederhana dari2sin(34π+x).cos(π4+x)=....a.1sin2xd.cos2xb.1+sin2xc.1cos2xe.cos2xJawab:a2sin(34π+x).cos(π4+x)=2sin(135+x).cos(45+x)=2sin(90+45+x).cos(45+x)=2cos(45+x).cos(45+x)=2cos2(45+x)=2(cos45cosxsin45sinx)2=2(122.cosx122.sinx)2=(cosxsinx)2=cos2x+sin2x2sinxcosx=1sin2x.

93.Bentuk sederhana dari2cos(x+π4).cos(34πx)=....a.cos(2x+π)d.cos(2xπ2)b.cos(2x+π2)e.sin2x1c.cos2xJawab:e2cos(x+π4).cos(34πx)=cos(x+π4+34πx)+cos(x+π4(34πx))=cosπ+cos(2x24π)=1+cos(12π2x),ingat bahwacos(α)=cosα=1+sin2x=sin2x1.

94.Nilai dari3sin80sin160sin320adalah....a.38d.38b.18e.58c.18Jawab:3sin80sin160sin320=3sin80sin20(sin40)=3sin80sin40sin20=3sin80(12(cos60cos20))=3sin80(14+cos202)=143sin80123sin80cos20=143sin80143(sin100+sin60)=143sin80143(sin80+123)=143sin80143sin80+189=38.

95.Nilai daricosπ7cos2π7cos4π7adalah....a.18d.12b.14c.0e.13Jawab:Alternatif 1cosπ7cos2π7cos4π7×2sin2π72sin2π7=(sin4π7sin0)cosπ7cos4π72sin2π7=sin4π7cosπ7cos4π72sin2π7=(sin5π7+sin3π7)cos4π74sin2π7=sin5π7cos4π7+sin3π7cos4π74sin2π7=sin9π7+sinπ7+sin7π7+sin(π7)8sin2π7=sin2π7+sinπ7+0sinπ78sin2π7=sin2π78sin2π7=18Alternatif 2cosπ7cos2π7cos4π7=cos4π7cos2π7cosπ7=12(cos6π7+cos2π7)cosπ7=12(cos(ππ7)+cos2π7)cosπ7=12(cosπ7+cos2π7)cosπ7=12(cos2π7+cos2π7cosπ7)=14(cos2π7cos0+cos3π7+cosπ7)=14(cos0+cosπ7cos2π7+cos3π7)=14(1+12)=14×(12)=18.

Berikut penjelasan untuk  cosπ7cos2π7+cos3π7=12.

cosπ7cos2π7+cos3π7=cosπ7cos2π7+cos3π7×(2sin2π7)(2sin2π7)=2cosπ7sin2π72cos2π7sin2π7+2cos3π7sin2π72sin2π7=sin3π7sin(π7)(sin4π7sin0π7)+sin5π7sinπ72sin2π7=sin3π7+sinπ7sin4π7+sin5π7sinπ72sin2π7=sin3π7sin4π7+sin5π72sin2π7=sin(π4π7)sin4π7+sin(π2π7)2sin2π7=sin4π7sin4π7+sin2π72sin2π7=sin2π72sin2π7=12.

96.Nilai darisinπ14sin3π14sin9π14adalah....a.116d.12b.18c.14e.1Jawab:Perhatikan bahwasinπ14=sin(7π146π14)=sin(12π6π14)=cos6π14sin3π14=...=cos4π14sin9π14=...=sin5π14=cos2π14...sinπ14sin3π14sin9π14=cos6π14cos4π14cos2π14×2sin2π142sin2π14=cos6π14cos4π14sin4π142sin2π14silahkan dilanjutkan...=18.


97.Nilai daricosπ5cos2π5cos4π5cos8π5adalah....a.116d.116b.18c.0e.18Jawab:cosπ5cos2π5cos4π5cos8π5=cosπ5cos2π5cos4π5cos(π+3π5)=cosπ5cos2π5cos4π5(cos3π5)=cosπ5cos2π5cos4π5cos3π5=cosπ5cos2π5cos3π5cos4π5=cosπ5cos2π5cos3π5cos4π5×2sinπ52sinπ5=cosπ5cos2π5cos3π5(sinπsin3π5)2sinπ5=cosπ5cos2π5cos3π5sin3π52sinπ5=cosπ5cos3π5(cos2π5sin3π5)2sinπ5=cosπ5cos3π5(sinπsin(π5))4sinπ5=cosπ5cos3π5sinπ54sinπ5=cos3π5cosπ5sinπ54sinπ5=cos3π5(cosπ5sinπ5)4sinπ5=cos3π5(sin2π5sin0)8sinπ5=cos3π5sin2π58sinπ5=sinπsinπ516sinπ5=sinπ516sinπ5=116.

98.Nilai darisinπ24.sin5π24.sin7π24.sin11π24a.516d.216b.416c.316e.116(Olimpiade Sains PORSEMA NU 2012)Jawab:esinπ24.sin5π24.sin7π24.sin11π24=14(2sin11π24.sinπ24.2sin7π24.sin5π24)=14[(cos(10π24)cos(12π24))×(cos(2π24)cos(12π24))]=14[(cos75cos90)×(cos15cos90)]=14[cos75.cos15]=18[cos90+cos60]=18(0+12)=116.

99.Nilai darisin18cos36adalah....a.16d.13b.15c.14e.12Jawab:sin18cos36=sin18cos36×2cos182cos18=cos36(sin36+sin0)4cos18=cos36sin364cos18=sin724cos18=sin(9018)4cos18=cos184cos18=14.

100.Nilai eksak darisin36adalah....a.1410+25d.514b.141025e.512c.5+14Jawab:Perhatikanlah ilustrasi gambar berikut.
.Perhatikan bahwaABCsama kakidenganAD=DC=CB=1,AC=xDiketahui pulaCDadalah garis bagisertaABCsebangunBCDakibatnya:perbandingan sisi yang bersesuaianakan sama,makaABBC=BCABADx1=1x1x(x1)=1x2x1=0x=1±52akibatnyaAB=AC=1+52Selanjutnya gunakanaturan sinusABsinC=BCsinAABBC=sinCsinA(1+52)1=sin72sin361+52=2sin36cos36sin361+52=2cos36cos36=⇔1+54Dari fakta di atas kita akan denganmudah menentukan nilai sinusnyayaitu dengan menggunakanidentitas trigonometri berikut:sin236+cos236=1sin236=1cos236sin36=1cos236=1(1+54)2=16+2516=102516=141025.