Latihan Soal 10 Persiapan PAS Gasal Matematika Peminatan Kelas XI (Persamaan dan Rumus Jumlah dan Selisih Trigonometri)

91.Bentuk sederhana dari4sin(14π+x)cos(14πx)adalah....a.2+2sin2xd.2+2sinxb.2+sin2xe.2+sinxc.2sin2xJawab:4sin(14π+x)cos(14πx)=2(sin(12π)+sin(2x))=2(1+sin2x)=2+2sin2x.

92.Bentuk sederhana dari2sin(34π+x).cos(π4+x)=....a.1sin2xd.cos2xb.1+sin2xc.1cos2xe.cos2xJawab:a2sin(34π+x).cos(π4+x)=2sin(135+x).cos(45+x)=2sin(90+45+x).cos(45+x)=2cos(45+x).cos(45+x)=2cos2(45+x)=2(cos45cosxsin45sinx)2=2(122.cosx122.sinx)2=(cosxsinx)2=cos2x+sin2x2sinxcosx=1sin2x.

93.Bentuk sederhana dari2cos(x+π4).cos(34πx)=....a.cos(2x+π)d.cos(2xπ2)b.cos(2x+π2)e.sin2x1c.cos2xJawab:e2cos(x+π4).cos(34πx)=cos(x+π4+34πx)+cos(x+π4(34πx))=cosπ+cos(2x24π)=1+cos(12π2x),ingat bahwacos(α)=cosα=1+sin2x=sin2x1.

94.Nilai dari3sin80sin160sin320adalah....a.38d.38b.18e.58c.18Jawab:3sin80sin160sin320=3sin80sin20(sin40)=3sin80sin40sin20=3sin80(12(cos60cos20))=3sin80(14+cos202)=143sin80123sin80cos20=143sin80143(sin100+sin60)=143sin80143(sin80+123)=143sin80143sin80+189=38.

95.Nilai daricosπ7cos2π7cos4π7adalah....a.18d.12b.14c.0e.13Jawab:Alternatif 1cosπ7cos2π7cos4π7×2sin2π72sin2π7=(sin4π7sin0)cosπ7cos4π72sin2π7=sin4π7cosπ7cos4π72sin2π7=(sin5π7+sin3π7)cos4π74sin2π7=sin5π7cos4π7+sin3π7cos4π74sin2π7=sin9π7+sinπ7+sin7π7+sin(π7)8sin2π7=sin2π7+sinπ7+0sinπ78sin2π7=sin2π78sin2π7=18Alternatif 2cosπ7cos2π7cos4π7=cos4π7cos2π7cosπ7=12(cos6π7+cos2π7)cosπ7=12(cos(ππ7)+cos2π7)cosπ7=12(cosπ7+cos2π7)cosπ7=12(cos2π7+cos2π7cosπ7)=14(cos2π7cos0+cos3π7+cosπ7)=14(cos0+cosπ7cos2π7+cos3π7)=14(1+12)=14×(12)=18.

Berikut penjelasan untuk  cosπ7cos2π7+cos3π7=12.

cosπ7cos2π7+cos3π7=cosπ7cos2π7+cos3π7×(2sin2π7)(2sin2π7)=2cosπ7sin2π72cos2π7sin2π7+2cos3π7sin2π72sin2π7=sin3π7sin(π7)(sin4π7sin0π7)+sin5π7sinπ72sin2π7=sin3π7+sinπ7sin4π7+sin5π7sinπ72sin2π7=sin3π7sin4π7+sin5π72sin2π7=sin(π4π7)sin4π7+sin(π2π7)2sin2π7=sin4π7sin4π7+sin2π72sin2π7=sin2π72sin2π7=12.

96.Nilai darisinπ14sin3π14sin9π14adalah....a.116d.12b.18c.14e.1Jawab:Perhatikan bahwasinπ14=sin(7π146π14)=sin(12π6π14)=cos6π14sin3π14=...=cos4π14sin9π14=...=sin5π14=cos2π14...sinπ14sin3π14sin9π14=cos6π14cos4π14cos2π14×2sin2π142sin2π14=cos6π14cos4π14sin4π142sin2π14silahkan dilanjutkan...=18.


97.Nilai daricosπ5cos2π5cos4π5cos8π5adalah....a.116d.116b.18c.0e.18Jawab:cosπ5cos2π5cos4π5cos8π5=cosπ5cos2π5cos4π5cos(π+3π5)=cosπ5cos2π5cos4π5(cos3π5)=cosπ5cos2π5cos4π5cos3π5=cosπ5cos2π5cos3π5cos4π5=cosπ5cos2π5cos3π5cos4π5×2sinπ52sinπ5=cosπ5cos2π5cos3π5(sinπsin3π5)2sinπ5=cosπ5cos2π5cos3π5sin3π52sinπ5=cosπ5cos3π5(cos2π5sin3π5)2sinπ5=cosπ5cos3π5(sinπsin(π5))4sinπ5=cosπ5cos3π5sinπ54sinπ5=cos3π5cosπ5sinπ54sinπ5=cos3π5(cosπ5sinπ5)4sinπ5=cos3π5(sin2π5sin0)8sinπ5=cos3π5sin2π58sinπ5=sinπsinπ516sinπ5=sinπ516sinπ5=116.

98.Nilai darisinπ24.sin5π24.sin7π24.sin11π24a.516d.216b.416c.316e.116(Olimpiade Sains PORSEMA NU 2012)Jawab:esinπ24.sin5π24.sin7π24.sin11π24=14(2sin11π24.sinπ24.2sin7π24.sin5π24)=14[(cos(10π24)cos(12π24))×(cos(2π24)cos(12π24))]=14[(cos75cos90)×(cos15cos90)]=14[cos75.cos15]=18[cos90+cos60]=18(0+12)=116.

99.Nilai darisin18cos36adalah....a.16d.13b.15c.14e.12Jawab:sin18cos36=sin18cos36×2cos182cos18=cos36(sin36+sin0)4cos18=cos36sin364cos18=sin724cos18=sin(9018)4cos18=cos184cos18=14.

100.Nilai eksak darisin36adalah....a.1410+25d.514b.141025e.512c.5+14Jawab:Perhatikanlah ilustrasi gambar berikut.
.Perhatikan bahwaABCsama kakidenganAD=DC=CB=1,AC=xDiketahui pulaCDadalah garis bagisertaABCsebangunBCDakibatnya:perbandingan sisi yang bersesuaianakan sama,makaABBC=BCABADx1=1x1x(x1)=1x2x1=0x=1±52akibatnyaAB=AC=1+52Selanjutnya gunakanaturan sinusABsinC=BCsinAABBC=sinCsinA(1+52)1=sin72sin361+52=2sin36cos36sin361+52=2cos36cos36=⇔1+54Dari fakta di atas kita akan denganmudah menentukan nilai sinusnyayaitu dengan menggunakanidentitas trigonometri berikut:sin236+cos236=1sin236=1cos236sin36=1cos236=1(1+54)2=16+2516=102516=141025.


 

Tidak ada komentar:

Posting Komentar

Informasi