Belajar matematika sejak dini
91.Bentuk sederhana dari4sin(14π+x)cos(14π−x)adalah....a.2+2sin2xd.2+2sinxb.2+sin2xe.2+sinxc.2sin2xJawab:4sin(14π+x)cos(14π−x)=2(sin(12π)+sin(2x))=2(1+sin2x)=2+2sin2x.
92.Bentuk sederhana dari2sin(34π+x).cos(π4+x)=....a.1−sin2xd.cos2xb.1+sin2xc.1−cos2xe.−cos2xJawab:a2sin(34π+x).cos(π4+x)=2sin(135∘+x).cos(45∘+x)=2sin(90∘+45∘+x).cos(45∘+x)=2cos(45∘+x).cos(45∘+x)=2cos2(45∘+x)=2(cos45∘cosx−sin45∘sinx)2=2(122.cosx−122.sinx)2=(cosx−sinx)2=cos2x+sin2x−2sinxcosx=1−sin2x.
93.Bentuk sederhana dari2cos(x+π4).cos(34π−x)=....a.cos(2x+π)d.−cos(2x−π2)b.cos(2x+π2)e.sin2x−1c.cos2xJawab:e2cos(x+π4).cos(34π−x)=cos(x+π4+34π−x)+cos(x+π4−(34π−x))=cosπ+cos(2x−24π)=−1+cos(12π−2x),ingat bahwacos(−α)=cosα=−1+sin2x=sin2x−1.
94.Nilai dari3sin80∘sin160∘sin320∘adalah....a.−38d.38b.−18e.58c.18Jawab:3sin80∘sin160∘sin320∘=3sin80∘sin20∘(−sin40∘)=−3sin80∘sin40∘sin20∘=−3sin80∘(−12(cos60∘−cos20∘))=−3sin80∘(−14+cos20∘2)=143sin80∘−123sin80∘cos20∘=143sin80∘−143(sin100∘+sin60∘)=143sin80∘−143(sin80∘+123)=143sin80∘−143sin80∘+189=38.
95.Nilai daricosπ7cos2π7cos4π7adalah....a.−18d.12b.−14c.0e.13Jawab:Alternatif 1cosπ7cos2π7cos4π7×2sin2π72sin2π7=(sin4π7−sin0)cosπ7cos4π72sin2π7=sin4π7cosπ7cos4π72sin2π7=(sin5π7+sin3π7)cos4π74sin2π7=sin5π7cos4π7+sin3π7cos4π74sin2π7=sin9π7+sinπ7+sin7π7+sin(−π7)8sin2π7=−sin2π7+sinπ7+0−sinπ78sin2π7=−sin2π78sin2π7=−18Alternatif 2cosπ7cos2π7cos4π7=cos4π7cos2π7cosπ7=12(cos6π7+cos2π7)cosπ7=12(cos(π−π7)+cos2π7)cosπ7=12(−cosπ7+cos2π7)cosπ7=12(−cos2π7+cos2π7cosπ7)=14(−cos2π7−cos0+cos3π7+cosπ7)=14(−cos0+cosπ7−cos2π7+cos3π7)=14(−1+12)=14×(−12)=−18.
Berikut penjelasan untuk cosπ7−cos2π7+cos3π7=12.
cosπ7−cos2π7+cos3π7=cosπ7−cos2π7+cos3π7×(2sin2π7)(2sin2π7)=2cosπ7sin2π7−2cos2π7sin2π7+2cos3π7sin2π72sin2π7=sin3π7−sin(−π7)−(sin4π7−sin0π7)+sin5π7−sinπ72sin2π7=sin3π7+sinπ7−sin4π7+sin5π7−sinπ72sin2π7=sin3π7−sin4π7+sin5π72sin2π7=sin(π−4π7)−sin4π7+sin(π−2π7)2sin2π7=sin4π7−sin4π7+sin2π72sin2π7=sin2π72sin2π7=12◼.
Informasi
Tidak ada komentar:
Posting Komentar
Informasi