Belajar matematika sejak dini
11.Perhatikanlah pernyataan-pernyataan berikut(1)∑i=15(5i+2)=4∑i=15i+10(2)∑i=15(5i2−i)=5∑i=15i2−∑i=15i(3)∑i=15(3i−4)=3∑i=15i2−4(4)∑i=15(i+7i2)=∑i=15i−7∑i=15iPernyataan yang tepat ditunjukkan oleh....a.(1)dan(2)b.(1)dan(3)c.(1)dan(4)d.(2)dan(3)e.(2)dan(4)Jawab:a(1)∑i=15(5i+2)=4∑i=15i+∑i=152=4∑i=15i+5×2=4∑i=15i+10(2)∑i=15(5i2−i)=5∑i=15i2−∑i=15i(3)∑i=15(3i−4)=3∑i=15i2−∑i=154=3∑i=15i2−5×4=3∑i=15i2−20(4)∑i=15(i+7i2)=∑i=15i+7∑i=15i.
12.Hasil dari∑i=14i2+∑i=56i2adalah....a.86b.91c.95d.101e.105Jawab:b∑i=14i2+∑i=56i2=∑i=16i2=12+22+32+42+52+62=1+4+9+16+25+36=91.
13.Hasil dari∑i=25(4i2−2i)adalah....a.144b.148c.154d.164e.188Jawab:e∑i=25(4i2−2i)=(4.22−2.2)+(4.32−2.3)+(4.42−2.4)+(4.52−2.5)=12+30+56+90=188.
14.Bentuk11n−1dengannbilangan asliakan habis dibagi oleh....a.7b.9c.10d.11e.13Jawab:cBentuk11n−1untukn=1=111−1=10.
15.Rumus yang tepat untuk pola12,13,14,15,...adalah....a.Un=n+9b.Un=n+10c.Un=n+11d.Un=2n+10e.Un=2n+11Jawab:cBentuk12,13,14,15,...untukUn=pn+q12=p+q13=2p+qakandidapatkan{p=1q=11SehinggaUn=n+11.
16.Diketahui1+5+9+...+(4n−1)=2n2−ndengannbilangan asli.Jikam<kdenganm,kbilangan asli juga,maka(4m−3)+(4m+1)+...+(4k−3)=....a.(k−m)(2k+2m−2)b.(k−m+1)(2k+2m−3)c.(k−m+1)(2k−2m+1)d.(k−m+1)(2k2+2m2−3)e.(k−m)2(2k−2m+4)Jawab:b1+5+9+...+(4m−3)+(4m+1)+...+(4k−3)=1+5+...+(4k−3)⏟2k2−k−1+5+...+(4(m−1)−3)⏟2(m−1)2−(m−1)=2k2−k−(2(m−1)2−(m−1))=2k2−k−2(m−1)2+(m−1)=2k2−k−2(m2−2m+1)+m−1=2k2−k−2m2+4m−2+m−1=2k2−k−2m2+5m−3=(k−m+1)(2k+2m−3).
17.Diketahui21+22+23+...+2n=2n+1−2dengannbilangan asli.Jikakbilangan asli,maka22+23+24+...+2k+2k+1=....a.(k−m)(2k+2m−2)b.(k−m+1)(2k+2m−3)c.(k−m+1)(2k−2m+1)d.(k−m+1)(2k2+2m2−3)e.(k−m)2(2k−2m+4)Jawab:d22+23+24+...+2k+2k+1=21+22+23+24+...+2k+2k+1−21=21+22+23+24+...+2k+2k+1⏟2k+1+1−2−21=2k+2−2−2=2k+2−4=2k.22−4=2k×4−4=4(2k−1).
18.Diketahui bahwaS(n)adalah formula dari2+5+10+17+...+(n2+1)=16(n+1)(2n2+n+6)JikaS(n)benar, untukn=k,maka....a.2+5+10+17+...+(k2+1)=16(k+1)(2k2+k+6)b.2+5+10+17+...+(n2+1)=16(k+1)(2k2+k+6)c.2+5+10+17+...+(k2+2)=16(k+2)(2k2+5k+9)d.(k2+1)=16(k+1)(2k2+k+6)e.(n2+2)=16(n+1)(2n2+5n+9)Jawab:aCukup jelasTinggal mensubstitusikan daritiapndigantik.
19.Diketahui bahwaS(n)adalah formula dari12+17+22+...+(5n+7)=12(n+1)(5n+14)JikaS(n)benar, untukn=k,maka benaruntukn=k+1.Pernyataan ini dapatdinyatakan dengan....a.12+17+22+...+(5k+7)=12(k+1)(5k+14)b.12+17+22+...+(5k+7)=12(k+1)(5k+19)c.12+17+22+...+(5k+12)=12(k+1)(5k+19)d.12+17+22+...+(5k+12)=12(k+2)(5k+14)e.12+17+22+...+(5k+12)=12(k+2)(5k+19)Jawab:e12+17+22+...+(5k+7)=12(k+1)(5k+14)12+17+22+...+(5(k+1)+7)=12((k+1)+1)(5(k+1)+14)12+17+22+...+(5k+12)=12(k+2)(5k+19).
20.Diketahui bahwaS(n)adalah formula dari4+5+6+7+...+(n+3)<5n2JikaS(n)benar, untukn=k+1,makapernyataan ini dapat ditulis dengan....a.4+5+6+...+(k+4)<5k2b.4+5+6+...+(k+3)<5k2c.4+5+6+...+(k+3)<5(k+1)2d.4+5+6+...+(k+4)<5(k2+2k+1)e.4+5+6+...+(k+4)<5(k+1)(k−1)Jawab:d4+5+6+...+(n+3)<5n2Saatn=k+1,maka4+5+6+...+((k+1)+3)<5(k+1)2=4+5+6+...+(k+4)<5(k2+2k+1).
Informasi
Tidak ada komentar:
Posting Komentar
Informasi