Belajar matematika sejak dini
81.Nilaicos512π−cos112πadalah....a.−126d.122b.−123c.−122e.126Jawab:cos512π−cos112π=−2sin(512π+112π2)sin(512π−112π2)=−2sin(612π2)sin(412π2)=−2sin(14π)sin(16π)=−2(122)(12)=−122.
82.Bentuksin(2x−32π)−sin(4x+12π)senilai dengan....a.−2sin3x.sinxd.2sin3x.sinxb.−2cos3x.sinxe.2cos3x.sinxc.2sin2(x−π)Jawab:sin(2x−32π)−sin(4x+12π)=2cos(2x−32π+4x+12π2)×sin(2x−32π−(4x+12π)2)=2cos(3x−12π)sin(−x−π)=2cos(12π−3x)(−sin(π+x))=2(sin3x)(−(−sinx))=2sin3x.sinx.
83.Nilaicos75∘−cos15∘sin75∘−sin15∘=....a.−1d.136b.122c.1e.126Jawab:acos75∘−cos15∘sin75∘−sin15∘=−2sin12(75∘+15∘)sin12(75∘−15∘)2cos12(75∘+15∘)sin12(75∘−15∘)=−2sin45∘×sin30∘2cos45∘×sin30∘=−tan45∘=−1
84.Bentukcos3x−sin6x−cos9xsin9x−cos6x−sin3xsenilai dengan....a.−tan6xd.6cotxb.−cot6xe.tan6xc.6tanxJawab:cos3x−sin6x−cos9xsin9x−cos6x−sin3x=cos3x−cos9x−sin6xsin9x−sin3x−cos6x=−2sin6xsin(−3x)−sin6x2cos6xsin3x−cos6x=2sin6xsin3x−sin6x2cos6xsin3x−cos6x=sin6x(2sin3x−1)cos6x(2sin3x−1)=tan6x.
85.Nilai darisinx+sin3x+sin5x+sin7xcosx+cos3x+cos5x+cos7xadalah....a.tan2xd.tan8xb.tan4xe.tan16xc.tan6xJawab:sinx+sin3x+sin5x+sin7xcosx+cos3x+cos5x+cos7x=sin7x+sinx+sin5x+sin3xcos7x+cosx+cos5x+cos3x=2sin4xcos3x+2sin4xcosx2cos4xcos3x+2cos4xcosx=2sin4x(cos3x+cosx)2cos4x(cos3x+cosx)=tan4x.
86.Bentuk sederhana daricosA+sinAcosA−sinA−cosA−sinAcosA+sinAadalah....a.tanAd.2cos2Ab.2tanAe.2tan2Ac.2sin2AJawab:cosA+sinAcosA−sinA−cosA−sinAcosA+sinA=(cosA+sinA)2−(cosA−sinA)2(cosA−sinA)(cosA+sinA)=(cos2A+2cosAsinA+sin2A)−(cos2A−2cosAsinA+sin2A)cos2A−sin2A=4cosAsinAcos2A−sin2A=2sin2Acos2A=2tan2A.
87.Bentuk sederhana daricos2x−cos2ysin2x+sin2yadalah....a.−sin(x−y)d.cos(x−y)b.−tan(x−y)e.tan(x−y)c.sin(x+y)Jawab:cos2x−cos2ysin2x+sin2y=−2sin(x+y)sin(x−y)2sin(x+y)cos(x−y)=−tan(x−y).
88.Nilai daricos80∘+cos40∘−cos20∘=....a.1d.−12b.−1c.12e.0Jawab:ecos80∘+cos40∘−cos20∘=2cos12(80∘+40∘)cos12(80∘−40∘)−cos20∘=2cos60∘cos20∘−cos20∘=2.12.cos20∘−cos20∘=cos20∘−cos20∘=0.
89.Nilai dari8cos82,5∘sin37,5∘adalah....a.4(3+2)d.2(3−2)b.4(3−2)e.3−2c.2(3+2)Jawab:8cos82,5∘sin37,5∘=4×2cos82,5∘sin37,5∘=4×(sin(82,5∘+37,5∘)−sin(82,5∘−37,5∘))=4×(sin120∘−sin45∘)=4×(sin(180∘−60∘)−sin45∘)=4×(sin60∘−sin45∘)=4×(123−122)=2(3−2).
90.Bentuk lain dari−2cos5A.cos7Aadalah....a.−cos6A−cosAb.−cos6A+cosAc.cos12A−cos2Ad.−cos12A+cos2Ae.−cos12A−cos2AJawab:−2cos5A.cos7A=−(2cos5A.cos7A)=−(cos12A+cos(−2A))=−(cos12A+cos2A)=−cos12A−cos2A.
Informasi
Tidak ada komentar:
Posting Komentar
Informasi