$\begin{array}{ll}\\ 31.&\textrm{Nilai}\: \: x\: \: \textrm{yang memenuhi persamaan}\\ &2\cos ^{2}x+\cos x-1=0\: \: \textrm{untuk}\: \: 0\leq x\leq \pi \\ &\textrm{adalah}\: ....\\ &\begin{array}{llll}\\ \color{red}\textrm{a}.&\displaystyle \frac{1}{3}\pi \: \: \textrm{dan}\: \: \pi \\ \textrm{b}.&\displaystyle \frac{1}{3}\pi \: \: \textrm{dan}\: \: \frac{2}{3}\pi \\ \textrm{c}.&\displaystyle \frac{1}{3}\pi \: \: \textrm{dan}\: \: \frac{3}{4}\pi \\ \textrm{d}.&\displaystyle \frac{1}{4}\pi \: \: \textrm{dan}\: \: \frac{3}{4}\pi \\ \textrm{e}.&\displaystyle \frac{1}{4}\pi \: \: \textrm{dan}\: \: \frac{2}{3}\pi \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{a}\\ &\begin{aligned}2\cos ^{2}x+\cos x-1&=0\\ \left (2\cos x-1 \right )\left (\cos x+1 \right )&=0\\ \cos x=\displaystyle \frac{1}{2}\: \: \color{black}\textrm{atau}\: \: &\cos x=-1\\ \cos x=\color{red}\cos 60^{\circ}=\cos \frac{1}{3}\pi \: \: &\\ \color{black}\textrm{atau}\: \: \cos x=\color{red}\cos 180^{\circ}&=\cos \pi \\ \end{aligned} \end{array}$
$\begin{array}{ll}\\ 32.&\textrm{Untuk}\: \: x\: \: \textrm{yang memenuhi persamaan}\\ &\tan ^{2}x-\tan x-6=0\: \: \textrm{pada}\: \: 0\leq x\leq \pi ,\\ &\textrm{maka himpunan nilai}\: \: \sin x\: \: \textrm{adalah}\: ....\\ &\begin{array}{llll}\\ \color{red}\textrm{a}.&\left \{ \displaystyle \frac{3\sqrt{10}}{10},\frac{2\sqrt{5}}{5} \right \}\\ \textrm{b}.&\left \{ \displaystyle \frac{3\sqrt{10}}{10},-\frac{2\sqrt{5}}{5} \right \} \\ \textrm{c}.&\left \{ -\displaystyle \frac{3\sqrt{10}}{10},\frac{2\sqrt{5}}{5} \right \} \\ \textrm{d}.&\left \{ \displaystyle \frac{\sqrt{10}}{10},\frac{\sqrt{5}}{5} \right \} \\ \textrm{e}.&\left \{ \displaystyle \frac{\sqrt{10}}{10},\frac{2\sqrt{5}}{5} \right \} \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{a}\\ &\begin{aligned}\tan ^{2}x-\tan x-6&=0\\ \left (\tan x-3 \right )\left (\tan x+2 \right )&=0\\ \tan x=3\: \: \textrm{atau}\: \: &\tan x=-2\\ \tan x=\displaystyle \frac{3}{1}\: \: \textrm{atau}\: \: &\tan x=\frac{-2}{1}\\ \sin x=\displaystyle \frac{3}{\sqrt{1^{2}+3^{2}}}\: \: \textrm{atau}\: \: &\sin x=\frac{2}{\sqrt{1^{2}+2^{2}}}\\ \sin x=\displaystyle \frac{3}{\sqrt{10}}\: \: \textrm{atau}\: \: &\sin x=\frac{2}{\sqrt{5}}\\ \sin x=\color{red}\displaystyle \frac{3}{10}\sqrt{10}\: \: \color{black}\textrm{atau}\: \: &\sin x=\color{red}\frac{2}{5}\sqrt{5} \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 33.&\textrm{Jika}\quad 2\sin ^{2}x+3\cos x=0\\ &\textrm{dan}\quad 0^{0}\leq x\leq 180^{0},\\ &\textrm{maka nilai \textit{x} adalah} ....\\ &\begin{array}{llllll}\\ \textrm{a}.&30^{0}\\ \textrm{b}.&60^{0}\\ \textrm{c}.&\color{red}120^{0}\\ \textrm{d}.&150^{0}\\ \textrm{e}.&170^{0}\\ \end{array}\\\\ &\textbf{Jawab}:\quad\color{red}\textbf{c}\\ &\begin{aligned}2&\sin ^{2}x+3\cos x=0,\\ & \textrm{ingat identitas}\quad \sin ^{2}x+\cos ^{2}x=1\\ 2&\left ( 1-\cos ^{2}x \right )+3\cos x=0\\ 2&-2\cos ^{2}x+3\cos x=0,\\ & \textrm{(dikali dengan -1)} \\ 2&\cos ^{2}x-\cos x-2=0,\\ & \textrm{menjadi persamaan kuadrat dalam}\: \: \cos x\\ &\left ( \cos x-2 \right )\left ( 2\cos x+1 \right )=0,\qquad (\textrm{difaktorkan})\\ &\cos x-2=0\quad \textrm{atau}\quad 2\cos x+1=0\\ &\underset{\textrm{tidak memenuhi}}{\underbrace{\cos x=2}}\quad \textrm{atau}\quad \underset{\textrm{memenuhi}}{\underbrace{\cos x=-\displaystyle \frac{1}{2}}},\\ & \textrm{ingat rentang nilai cosinus adalah}:\left | \cos x \right |\leq 1\\ &\textrm{Selanjutnya pilih yang memenuhi, yaitu}\\ &\cos x=-\displaystyle \frac{1}{2}\\ &\cos x=\cos \left ( 180^{0}-60^{0} \right )\\ &\cos x=\cos 120^{0}\\ &\therefore \quad x=\color{red}120^{0} \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 34.&\textrm{Akar-akar dari persamaan}\\ & 4\sin ^{2}x+4\cos x=1 \quad \textrm{pada selang}\\ & -\pi \leq x\leq \pi \quad \textrm{adalah} ....\\ &\begin{array}{llllll}\\ \textrm{a}.&\displaystyle \frac{3}{2}\: \: \textrm{atau}\: \: -\frac{1}{2}\\ \textrm{b}.&-\displaystyle \frac{3}{2}\: \: \textrm{atau}\: \: \frac{1}{2}\\ \textrm{c}.&\displaystyle \frac{3}{2}\pi \: \: \textrm{atau}\: \: -\frac{1}{2}\pi \\ \textrm{d}.&\displaystyle \frac{1}{3}\pi \: \: \textrm{atau}\: \: -\frac{1}{3}\pi \\ \textrm{e}.&\color{red}\displaystyle -\frac{2}{3}\pi \: \: \textrm{atau}\: \: \frac{2}{3}\pi \\ \end{array}\\\\ &\textbf{Jawab}:\quad\color{red}\textbf{e}\\ &\begin{aligned}4&\sin ^{2}x+4\cos x=1\\ 4&\left ( 1-\cos ^{2}x \right )+4\cos x-1=0\\ 4&-4\cos ^{2}x+4\cos x-1=0\\ 4&\cos ^{2}x-4\cos x-3=0\\ &\left ( 2\cos x-3 \right )\left ( 2\cos x+1 \right )=0\\ &\left ( 2\cos x-3 \right )=0\quad \textrm{atau}\quad \left ( 2\cos x+1 \right )=0\\ &\underset{\textrm{tidak memenuhi}}{\underbrace{\cos x=\displaystyle \frac{3}{2}}}\quad \textrm{atau} \quad\underset{\textrm{memenuhi}}{\underbrace{\cos x=-\displaystyle \frac{1}{2}}}\\ &\textrm{pilih yang memenuhi persamaan, yaitu}\\ &\cos x=-\displaystyle \frac{1}{2}\\ &\cos x=\cos \left ( 180^{0}-60^{0} \right )\\ &\cos x=\cos 120^{0}\\ &\therefore \quad x=120^{0}=\color{red}\displaystyle \frac{2}{3}\pi \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 35.&\textrm{Himpunan penyelesaian persamaan}\\ &\sin ^{2}2x+2\sin x\cos x -2=0\\ & \textrm{pada selang}\quad 0 \leq x\leq 360^{0} \quad \textrm{adalah} ....\\ &\begin{array}{llllll}\\ \textrm{a}.&\left \{ 45^{0},135^{0} \right \}\\ \textrm{b}.&\color{red}\left \{ 45^{0},225^{0} \right \}\\ \textrm{c}.&\left \{ 135^{0},180^{0} \right \}\\ \textrm{d}.&\left \{ 135^{0},225^{0} \right \} \\ \textrm{e}.&\left \{ 135^{0},315^{0} \right \} \\ \end{array}\\\\ &\textbf{Jawab}:\quad\color{red}\textbf{b}\\ &\begin{aligned}&\sin ^{2}2x+2\sin x\cos x -2=0\\ &\sin ^{2}2x+\sin 2x-2=0,\\ & \textrm{(ingat bahwa)}:\: \sin 2x=2\sin x\cos x\\ &\left ( \sin 2x+2 \right )\left ( \sin 2x-1 \right )=0\\ &\sin 2x+2=0\quad \textrm{atau}\quad \sin 2x-1=0\\ &\underset{\textrm{tidak memenuhi}}{\underbrace{\sin 2x=-2}}\quad \textrm{atau}\quad \underset{\textrm{memenuhi}}{\underbrace{\sin 2x=1}}\\ &\textrm{pilih yang memenuhi persamaan, yaitu}\\ &\sin 2x=1\\ &\sin 2x=\sin 90^{0}\\ &\quad 2x=90^{0}+k.360^{0}\quad \textrm{atau}\\ &\quad 2x=\left (180^{0}-90^{0} \right )+k.360^{0}\\ & \textrm{(cukup ambil 1 persamaan saja, karena sama)}\\ &\qquad x=45^{0}+k.180^{0}\\ &k=0\Rightarrow x=45^{0}+0.180^{0}=45^{0}\\ &k=1\Rightarrow x=45^{0}+1.180^{0}=45^{0}+180^{0}=225^{0}\\ &k=2\Rightarrow x=45^{0}+2.180^{0}=45^{0}+360^{0}=405^{0}\\ & \textrm{(tidak memenuhi rentang)}\\ &\therefore \quad \textbf{HP}=\color{red}\left \{ 45^{0},225^{0} \right \} \end{aligned} \end{array}$.
$\begin{array}{ll}\\ 36.&\textrm{Bentuk}\: \: \sqrt{3}\cos x-\sin x\: \: \textrm{untuk}\: \: 0\leq x\leq 2\pi ,\\ &\textrm{dapat dinyatakan sebagai}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&2\cos \left ( x+\displaystyle \frac{\pi }{6} \right )\\ \textrm{b}.&2\cos \left ( x+\displaystyle \frac{7\pi }{6} \right ) \\ \color{red}\textrm{c}.&2\cos \left ( x-\displaystyle \frac{11\pi }{6} \right )\\ \textrm{d}.&2\cos \left ( x-\displaystyle \frac{7\pi }{6} \right )\\ \textrm{e}.&2\cos \left ( x-\displaystyle \frac{\pi }{6} \right ) \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textrm{c}\\ &\begin{aligned}\sqrt{3}\cos x-\sin x&=k\cos (x-\alpha )\\ (1)\qquad & (a,b)=\begin{cases} a &=\sqrt{3} \\ b &=-1 \end{cases}\\ \textrm{maka}\: &\textrm{titik ada dikadran IV}\\ (2)\: \quad k&=\sqrt{a^{2}+b^{2}}\\ &=\sqrt{\sqrt{3}^{2}+(-1)^{2}}\\ &=\sqrt{4}=2\\ (3)\quad \alpha &=\arctan \frac{b}{a}=\arctan \left (\frac{-1}{\sqrt{3}} \right )=-30^{\circ}\\ &=\left ( 360^{\circ}-30^{\circ} \right )=330^{\circ}=\displaystyle \frac{11}{6}\pi \\ \textrm{sehingga}&\\ \sqrt{3}\cos x-\sin x&=\color{red}2\cos \left ( x-\displaystyle \frac{11}{6}\pi \right )\\ \end{aligned} \end{array}$
Tidak ada komentar:
Posting Komentar
Informasi