Belajar matematika sejak dini
6.Bentukcos3x−sin6x−cos9xsin9x−cos6x−sin3xsenilai dengan....a.−tan6xd.6cotxb.−cot6xe.tan6xc.6tanxJawab:cos3x−sin6x−cos9xsin9x−cos6x−sin3x=cos3x−cos9x−sin6xsin9x−sin3x−cos6x=−2sin6xsin(−3x)−sin6x2cos6xsin3x−cos6x=2sin6xsin3x−sin6x2cos6xsin3x−cos6x=sin6x(2sin3x−1)cos6x(2sin3x−1)=tan6x.
7.Nilai darisinx+sin3x+sin5x+sin7xcosx+cos3x+cos5x+cos7xadalah....a.tan2xd.tan8xb.tan4xe.tan16xc.tan6xJawab:sinx+sin3x+sin5x+sin7xcosx+cos3x+cos5x+cos7x=sin7x+sinx+sin5x+sin3xcos7x+cosx+cos5x+cos3x=2sin4xcos3x+2sin4xcosx2cos4xcos3x+2cos4xcosx=2sin4x(cos3x+cosx)2cos4x(cos3x+cosx)=tan4x.
8.Nilai daricos80∘+cos40∘−cos20∘=....a.1d.−12b.−1c.12e.0Jawab:ecos80∘+cos40∘−cos20∘=2cos12(80∘+40∘)cos12(80∘−40∘)−cos20∘=2cos60∘cos20∘−cos20∘=2.12.cos20∘−cos20∘=cos20∘−cos20∘=0.
9.Nilai dari3sin80∘sin160∘sin320∘adalah....a.−38d.38b.−18e.58c.18Jawab:3sin80∘sin160∘sin320∘=3sin80∘sin20∘(−sin40∘)=−3sin80∘sin40∘sin20∘=−3sin80∘(−12(cos60∘−cos20∘))=−3sin80∘(−14+cos20∘2)=143sin80∘−123sin80∘cos20∘=143sin80∘−143(sin100∘+sin60∘)=143sin80∘−143(sin80∘+123)=143sin80∘−143sin80∘+189=38.
10.Nilai daricosπ7cos2π7cos4π7adalah....a.−18d.12b.−14c.0e.13Jawab:Alternatif 1cosπ7cos2π7cos4π7×2sin2π72sin2π7=(sin4π7−sin0)cosπ7cos4π72sin2π7=sin4π7cosπ7cos4π72sin2π7=(sin5π7+sin3π7)cos4π74sin2π7=sin5π7cos4π7+sin3π7cos4π74sin2π7=sin9π7+sinπ7+sin7π7+sin(−π7)8sin2π7=−sin2π7+sinπ7+0−sinπ78sin2π7=−sin2π78sin2π7=−18Alternatif 2cosπ7cos2π7cos4π7=cos4π7cos2π7cosπ7=12(cos6π7+cos2π7)cosπ7=12(cos(π−π7)+cos2π7)cosπ7=12(−cosπ7+cos2π7)cosπ7=12(−cos2π7+cos2π7cosπ7)=14(−cos2π7−cos0+cos3π7+cosπ7)=14(−cos0+cosπ7−cos2π7+cos3π7)=14(−1+12)=14×(−12)=−18.
Berikut penjelasan untuk cosπ7−cos2π7+cos3π7=12.
cosπ7−cos2π7+cos3π7=cosπ7−cos2π7+cos3π7×(2sin2π7)(2sin2π7)=2cosπ7sin2π7−2cos2π7sin2π7+2cos3π7sin2π72sin2π7=sin3π7−sin(−π7)−(sin4π7−sin0π7)+sin5π7−sinπ72sin2π7=sin3π7+sinπ7−sin4π7+sin5π7−sinπ72sin2π7=sin3π7−sin4π7+sin5π72sin2π7=sin(π−4π7)−sin4π7+sin(π−2π7)2sin2π7=sin4π7−sin4π7+sin2π72sin2π7=sin2π72sin2π7=12◼.
Informasi
Tidak ada komentar:
Posting Komentar
Informasi