Perhatikan ilustasi berikut
$\Large\begin{array}{|c|}\hline \displaystyle \frac{a}{\sin A}= \frac{b}{\sin B}=\frac{c}{\sin C}=2R\\\hline \end{array}$.
$\begin{aligned}1.\quad a&=b.\displaystyle \frac{\sin \angle A}{\sin \angle B}=c.\displaystyle \frac{\sin \angle A}{\sin \angle C}=2R\sin \angle A\\ 2.\quad b&=c.\displaystyle \frac{\sin \angle B}{\sin \angle C}=a.\displaystyle \frac{\sin \angle B}{\sin \angle A}=2R\sin \angle B\\ 3.\quad c&=a.\displaystyle \frac{\sin \angle C}{\sin \angle A}=b.\displaystyle \frac{\sin \angle C}{\sin \angle B}=2R\sin \angle C \end{aligned}$.
Sehingga luas segitiga dapat dituliskan sebagai berikut:
$\begin{aligned} 1.\quad L\bigtriangleup ABC&=\displaystyle \frac{1}{2}ab\sin \angle C\\ &=\displaystyle \frac{1}{2}a\left ( a.\displaystyle \frac{\sin \angle B}{\sin \angle A} \right )\sin \angle C\\ &=\displaystyle \frac{1}{2}a^{2}\displaystyle \frac{\sin \angle B\sin \angle C}{\sin \angle A}\\ 2.\quad L\bigtriangleup ABC&=\displaystyle \frac{1}{2}bc\sin \angle A\\ &=\displaystyle \frac{1}{2}b\left ( b.\displaystyle \frac{\sin \angle C}{\sin \angle B} \right )\sin \angle A\\ &=\displaystyle \frac{1}{2}b^{2}\displaystyle \frac{\sin \angle B\sin \angle A}{\sin \angle B}\\ 3.\quad L\bigtriangleup ABC&=\displaystyle \frac{1}{2}ac\sin \angle B\\ &=\displaystyle \frac{1}{2}\left ( c.\displaystyle \frac{\sin \angle A}{\sin \angle C} \right )c\sin \angle B\\ &=\displaystyle \frac{1}{2}c^{2}\displaystyle \frac{\sin \angle A\sin \angle B}{\sin \angle C} \end{aligned}$.
D. 4 Luas segitiga sama sisi
$\begin{aligned}L_{\bigtriangleup }ABC&=\displaystyle \frac{1}{2}ab\sin \angle C,\quad a=b=c\\ &\qquad\quad\quad \textrm{dan}\: \: \angle A=\angle B\angle C=60^{\circ}\\ &=\displaystyle \frac{1}{2}a.a\sin 60^{\circ}\\ &=\displaystyle \frac{1}{2}a^{2}\left ( \displaystyle \frac{1}{2}\sqrt{3} \right )\\ &=\color{red}\displaystyle \frac{1}{4}a^{2}\sqrt{3} \end{aligned}$.
D. 5 Lingkaran Luar Segitiga
Perhatikan lagi lingkaran luar segitiga di atas, dari sana kita akan mendapatkan rumus luas segitiga yang dapat kita munculkan harga R nya, yaitu:
$\begin{aligned}1.\quad L\bigtriangleup ABC&=\displaystyle \frac{1}{2}ab\sin \angle C\\ &=\displaystyle \frac{1}{2}(2R\sin \angle A)(2R\sin \angle B)\sin \angle C\\ &=2R^{2}\sin \angle A\sin \angle B\sin \angle C\\ 2.\quad L\bigtriangleup ABC&=\displaystyle \frac{1}{2}ab\sin \angle C\\ &=\displaystyle \frac{1}{2}ab\left ( \displaystyle \frac{c}{2R} \right )\\ &=\color{red}\displaystyle \frac{abc}{4R} \end{aligned}$.
D. 6 Lingkaran dalam segitiga
Perhatikanlah gambar berikut
$\begin{aligned}\textrm{Diketahu}&\textrm{i}\\ L_{\bigtriangleup }AOB&=\displaystyle \frac{1}{2}(AB)(OD)=\color{red}\displaystyle \frac{1}{2}cr\\ L_{\bigtriangleup }AOC&=\displaystyle \frac{1}{2}(AC)(OF)=\color{red}\displaystyle \frac{1}{2}br\\ L_{\bigtriangleup }BOC&=\displaystyle \frac{1}{2}(BC)(OE)=\color{red}\displaystyle \frac{1}{2}ar\\ \textrm{Sehingga}&\\ L_{\bigtriangleup }ABC&=\left [ ABC \right ]\\ &=\color{red}\displaystyle \frac{1}{2}ar+\displaystyle \frac{1}{2}br+\displaystyle \frac{1}{2}cr\\ &=\displaystyle \frac{1}{2}r(a+b+c)\\ &=\displaystyle \frac{1}{2}r(2s)\\ &=rs \end{aligned}$.
D. 7 Lingkaran singgung segitiga
Sebagai ilustrasinya adalah gambar berikut
$\begin{aligned}&\textrm{Diketahui}\\ &DO=EO=FO=r_{a}\\ &\textrm{maka}\\ &1.\quad L_{\bigtriangleup}ABO=\displaystyle \frac{1}{2}(AB)(OD)=\displaystyle \frac{1}{2}cr_{a}\\ &2.\quad L_{\bigtriangleup}ACO=\displaystyle \frac{1}{2}(AC)(OE)=\displaystyle \frac{1}{2}br_{a}\\ &3.\quad L_{\bigtriangleup}BCO=\displaystyle \frac{1}{2}(BC)(OF)=\displaystyle \frac{1}{2}ar_{a} \end{aligned}$.
$\begin{aligned} \textrm{Sehingga}&\\ L_{\bigtriangleup }ABC&=\left [ ABC \right ]\\ &=\left [ ACO \right ]+\left [ ABO \right ]-\left [ BCO \right ]\\ &=\color{red}\displaystyle \frac{1}{2}br_{a}+\displaystyle \frac{1}{2}cr_{a}-\displaystyle \frac{1}{2}ar_{a}\\ &=\displaystyle \frac{1}{2}r_{a}(b+c-a)\\ &=\displaystyle \frac{1}{2}r_{a}(a+b+c-2a)\\ &=\displaystyle \frac{1}{2}r_{a}(2s-2a)\\ &=\color{red}r_{a}(s-a) \end{aligned}$.
$\LARGE\colorbox{yellow}{CONTOH SOAL}$.
$\begin{array}{ll}\\ 1.&\textrm{Diberikan sembarang}\: \: \bigtriangleup ABC\: .\: \textrm{Jika}\: \: r\\ & \textrm{merupakan jari-jari lingkaran singgung }\\ &\textrm{dalam pada}\: \: \bigtriangleup ABC\: \: \textrm{dan}\: \: r_{a},\: r_{b},\: r_{c}\\ &\textrm{adalah jari-jari singgung luar pad}\: \: \bigtriangleup ABC\\ &\textrm{tunjukkan bahwa}:\: \displaystyle \frac{1}{r_{a}}+\frac{1}{r_{b}}+\frac{1}{r_{c}}=\frac{1}{r}\\\\ &\textbf{Bukti}:\\ &\begin{aligned} \textrm{Diketahu}&\textrm{i}\\ L_{\bigtriangleup }ABC&=\color{red}r_{a}(s-a),\: \color{black}\Rightarrow r_{a}=\displaystyle \frac{\left [ ABC \right ]}{s-a}\\ L_{\bigtriangleup }ABC&=\color{red}r_{b}(s-b),\: \color{black}\Rightarrow r_{b}=\displaystyle \frac{\left [ ABC \right ]}{s-b}\\ L_{\bigtriangleup }ABC&=\color{red}r_{c}(s-c),\: \color{black}\Rightarrow r_{c}=\displaystyle \frac{\left [ ABC \right ]}{s-c}\\ \textrm{maka}\: \quad&\\ \displaystyle \frac{1}{r_{a}}+\frac{1}{r_{b}}&+\frac{1}{r_{c}}\\ &=\displaystyle \frac{1}{\displaystyle \frac{\left [ ABC \right ]}{s-a}}+\displaystyle \frac{1}{\displaystyle \frac{\left [ ABC \right ]}{s-b}}+\displaystyle \frac{1}{\displaystyle \frac{\left [ ABC \right ]}{s-c}}\\ &=\displaystyle \frac{s-a}{\left [ ABC \right ]}+\displaystyle \frac{s-b}{\left [ ABC \right ]}+\displaystyle \frac{s-c}{\left [ ABC \right ]}\\ &=\displaystyle \frac{s-a+s-b+s-c}{\left [ ABC \right ]}\\ &=\displaystyle \frac{3s-(a+b+c)}{\left [ ABC \right ]}\\ &=\displaystyle \frac{3s-2s}{\left [ ABC \right ]}\\ &=\displaystyle \frac{s}{\left [ ABC \right ]}\\ &=\displaystyle \frac{1}{\displaystyle \frac{\left [ ABC \right ]}{s}}\\ &=\color{blue}\displaystyle \frac{1}{r}\qquad \color{black}\blacksquare \end{aligned} \end{array}$.
Tidak ada komentar:
Posting Komentar
Informasi