$\begin{array}{ll}\\ 16.&\textrm{Penyelesaian pertidaksamaan}\\ &\displaystyle \sqrt{6x-4}< \sqrt{2x+8} \: \: \textrm{adalah... .}\\ &\begin{array}{llll}\\ \textrm{a}.&-4<x\leq \displaystyle \frac{2}{3}\\ \textrm{b}.&-4<x<3\\ \color{red}\textrm{c}.&\displaystyle \frac{2}{3}\leq x< 3\\ \textrm{d}.&2<x\leq 4\\ \textrm{e}.&-4\leq x\leq 4 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{c}\\ &\color{blue}\begin{aligned}\displaystyle \sqrt{6x-4}&< \sqrt{2x+8} \\ 1.\quad\textrm{Kuadrat}&\textrm{kan}\\ 6x-4&<2x+8\\ 6x-2x&<8+4\\ 4x&<12\\ x&<3\\ 2.\quad \textrm{Di bawa}&\textrm{h tanda akar}\: \: \geq 0\\ 6x-4&\geq 0\\ 6x&\geq 4\\ x&\geq \displaystyle \frac{2}{3}\\ 3.\quad \textrm{Di bawa}&\textrm{h tanda akar}\: \: \geq 0\\ 2x+8&\geq 0\\ 2x&\geq -8\\ x&\geq -4 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 17.&\textrm{Penyelesaian pertidaksamaan}\\ &\displaystyle \sqrt{x+3}> \sqrt{12-2x} \: \: \textrm{adalah... .}\\ &\begin{array}{llll}\\ \textrm{a}.&3<x\leq 6\\ \color{red}\textrm{b}.&-3<x\leq 6\\ \textrm{c}.&-6<x\leq 3\\ \textrm{d}.&-6<x\leq -3\\ \textrm{e}.&x<3\: \: \textrm{atau}\: \: x>6 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{b}\\ &\color{blue}\begin{aligned}\displaystyle \displaystyle \sqrt{x+3}&> \sqrt{12-2x} \\ 1.\quad\textrm{Kuadrat}&\textrm{kan}\\ x+3&>12-2x\\ x+2x&>12-3\\ 3x&>9\\ x&>3\\ 2.\quad \textrm{Di bawa}&\textrm{h tanda akar}\: \: \geq 0\\ x+3&\geq 0\\ x&\geq -3\\ 3.\quad \textrm{Di bawa}&\textrm{h tanda akar}\: \: \geq 0\\ 12-2x&\geq 0\\ 2x-12&\leq 0\\ 2x&\leq 12\\ x&\leq 6 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 18.&(\textbf{SBMPTN 2013 Mat Das})\\ &\textrm{Jika}\: \: 1<m<2\: ,\: \textrm{maka semua nilai}\\ &x\: \: \textrm{yang memenuhi pertidaksamaan}\\ &\displaystyle \frac{x^{2}+4x}{-x^{2}+3x-3m}>0\: \: \textrm{adalah}\: ....\\ &\begin{array}{llll}\\ \textrm{a}.&x>-3\\ \textrm{b}.&x<-4\\ \color{red}\textrm{c}.&-4<x<0\\ \textrm{d}.&x<-4\: \: \textrm{atau}\: \: x>0\\ \textrm{e}.&x<-3\: \: \textrm{atau}\: \: x>-1 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{c}\\ &\color{blue}\begin{aligned}1.\quad&\textrm{Diketahui bahwa}:\: \: \color{red}\displaystyle \frac{x^{2}+4x}{-x^{2}+3x-3m}>0\\ &\color{black}\textrm{dengan kondisi}\: \: 1<m<2\\ &\textrm{Perhatikanlah penyebutnya yang}\\ &\textrm{mengandung bilangan}\: \: \color{red}m\: \: \color{blue}\textrm{yang terletak}\\ & \textrm{pada interval}\: :\: \color{red}1<m<2.\\ 2.\quad&\textrm{Kita cek kondisi penyebutnya dengan}\\ &\textrm{menentukan}\: Diskriminan(D)-\textrm{nya}\\ &\textrm{yaitu}:\\ &\color{red}ax^{2}+bx+c \color{black}\begin{cases} \color{black}a>0\: \&\: D=b^{2}-4ac<0\\ \qquad \Rightarrow \textrm{definit positif} \\ \color{red}a<0\: \& \: D=b^{2}-4ac<0\\ \qquad \Rightarrow \textrm{definit negatif} \end{cases}\\ &\textrm{Karena penyebutnya}\: :\: -x^{2}+3x-3m,\\ &\textrm{dengan}\: \color{red}a=-1,\: b=3,\: \&\: c=-3m,\: \color{blue}\textrm{maka}\\ &\color{black}D=\color{red}3^{2}-4(-1)(-3m)=\color{black}9-12m\\ 3.\quad&\textrm{Karena nilai}\: \: \color{red}m\: \color{blue}\textrm{berada pada}\: \: \color{red}1<m<2\\ &\textrm{maka}\\ &\qquad \color{red}1<m<2\\ &\Leftrightarrow \: \color{red}12<12m<24\\ &\Leftrightarrow \: \color{red}-12>-12m>-24\\ &\Leftrightarrow \: \color{red}9-12>\color{black}9-12m\color{red}>-13\\ &\Leftrightarrow \: \color{red}-3>\color{black}9-12m\color{red}>-13\\ &\Leftrightarrow \: \color{red}-13<\color{black}9-12m\color{red}<-3\\ &\textrm{Ini berarti nilai}\: D\: \: \textrm{negatif, sehingga}\\ &\textrm{berakibat penyebut berupa}\: \: -x^{2}+3x-3m\\ &\color{black}\textrm{adalah wilayah}\: \: \color{red}definit\: negatif\\ 4.\quad&\textrm{Selanjutnya pemfaktoran pertidaksamaan}\\ &\bullet \: \color{black}\textrm{semula}\\ &\quad \displaystyle \frac{x(x+4)}{\underset{\color{red}definit\: negatif}{\underbrace{-x^{2}+3x-3m}}}>0\color{black}\Leftrightarrow \frac{x(x+4)}{-}>0\\ &\bullet \: \color{black}\textrm{akan berubah menjadi}\\ &\qquad \color{black}x(x+4)<0\\ &\qquad\textrm{pembuat nol-nya adalah}:\: \color{red}x(x+4)=0\\ &\qquad\textrm{maka}\: \: \color{red}x=-4\: \: \color{blue}\textrm{atau}\: \color{red}x=0,\: \color{blue}\textrm{sehingga}\\ &\qquad \textrm{interval nilai}\: \color{red}x\color{blue}-\textrm{nya}\: : \color{red}-4<x<0 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 19.&\textrm{Jika}\: \: 1<a<2\: ,\: \textrm{maka semua nilai}\\ &x\: \: \textrm{yang memenuhi pertidaksamaan}\\ &\displaystyle \frac{-x^{2}+2ax-6}{x^{2}+3x}\leq 0\: \: \textrm{adalah}\: ....\\ &\begin{array}{llll}\\ \color{red}\textrm{a}.&x<-3\: \: \textrm{atau}\: \: x>0\\ \textrm{b}.&x<-3\: \: \textrm{atau}\: \: x\geq -2\\ \textrm{c}.&x\leq -2\: \: \textrm{atau}\: \: x\geq 2\\ \textrm{d}.&-3<x<0\\ \textrm{e}.&-2\leq x<0 \end{array}\\\\ &\textrm{Jawab}:\quad \color{red}\textbf{a}\\ &\color{blue}\begin{aligned}1.\quad&\textrm{Diketahui bahwa}:\: \: \color{red}\displaystyle \frac{-x^{2}+2ax-6}{x^{2}+3x}\leq 0\\ &\textrm{untuk membedakan}\: \: a\: \: \textrm{pada persamaan}\\ &\textrm{kuadrat dengan}\: \: a\: \: \textrm{di atas, selanjutnya}\\ &\textrm{kita menuliskan}\: a\: \textrm{di atas dengan}:\: \color{red}m\\ &\color{black}\textrm{karena}\: \: 1<a<2\: \: \textrm{diubah}:1<m<2\\ &\textrm{Perhatikanlah pembilang yang}\\ &\textrm{mengandung bilangan}\: \: \color{red}m\: \: \color{blue}\textrm{yang terletak}\\ & \textrm{pada interval}\: :\: \color{red}1<m<2.\\ 2.\quad&\textrm{Kita cek kondisi pembilangnya dengan}\\ &\textrm{menentukan}\: Diskriminan(D)-\textrm{nya}\\ &\textrm{yaitu}:\\ &\color{red}ax^{2}+bx+c \color{black}\begin{cases} \color{black}a>0\: \&\: D=b^{2}-4ac<0\\ \qquad \Rightarrow \textrm{definit positif} \\ \color{red}a<0\: \& \: D=b^{2}-4ac<0\\ \qquad \Rightarrow \textrm{definit negatif} \end{cases}\\ &\textrm{Karena pebilangnya}\: :\: \color{red}-x^{2}+2mx-6,\\ &\textrm{dengan}\: \color{red}a=-1,\: b=2m,\: \&\: c=-6,\: \color{blue}\textrm{maka}\\ &\color{black}D=\color{red}(2m)^{2}-4(-1)(-6)=\color{black}4m^{2}-24\\ 3.\quad&\textrm{Karena nilai}\: \: \color{red}m\: \color{blue}\textrm{berada pada}\: \: \color{red}1<m<2\\ &\textrm{maka}\\ &\qquad \color{red}1<m<2\\ &\Leftrightarrow \: \color{red}1^{2}<m^{2}<2^{2}\color{blue}\Leftrightarrow \color{red}1<m^{2}<4\\ &\Leftrightarrow \: \color{red}4<4m^{2}<16\\ &\Leftrightarrow \: \color{red}4-24<\color{black}4m^{2}-24\color{red}<16-24\\ &\Leftrightarrow \: \color{red}-20<\color{black}4m^{2}-24\color{red}<-8\\ &\textrm{Ini berarti nilai}\: D\: \: \textrm{negatif, sehingga}\\ &\textrm{berakibat pembilangnya berupa}\: \: -x^{2}+2mx-6\\ &\color{black}\textrm{adalah wilayah}\: \: \color{red}definit\: negatif\\ 4.\quad&\textrm{Selanjutnya pemfaktoran pertidaksamaan}\\ &\bullet \: \color{black}\textrm{semula}\\ &\quad \displaystyle \frac{\overset{\color{red}definit\: negatif}{\overbrace{\color{blue}-x^{2}+2mx-6}}}{x(x+3)}\leq 0\color{black}\Leftrightarrow \frac{-}{x(x+3)}\leq 0\\ &\bullet \: \color{black}\textrm{akan berubah menjadi}\\ &\qquad \color{black}x(x+3)> 0\\ &\qquad\textrm{pembuat nol-nya adalah}:\: \color{red}x(x+3)=0\\ &\qquad\textrm{maka}\: \: \color{red}x=-3\: \: \color{blue}\textrm{atau}\: \color{red}x=0,\: \color{blue}\textrm{sehingga}\\ &\qquad \textrm{interval nilai}\: \color{red}x\color{blue}-\textrm{nya}\: : \color{red}x<-3\: \: \textrm{atau}\: \: x>0 \end{aligned} \end{array}$
$\begin{array}{ll}\\ 20.&(\color{purple}\textrm{KSM 2019})\\ &\textrm{Banyaknya selesaian real dari persamaan}\\ &2x^{2}-7x+6=15\left \lfloor \displaystyle \frac{1}{x} \right \rfloor\left \lfloor x \right \rfloor\\ &\begin{array}{llll}\\ \textrm{a}.&0\\ \textrm{b}.&2\\ \textrm{c}.&3\\ \textrm{d}.&5\\ \end{array}\\\\ &\textrm{Jawab}:\quad \textbf{tidak ada}\\ & \end{array}$
$.\: \: \: \quad\begin{aligned}\textrm{Solu}&\textrm{si jawaban merujuk dari blog Pak Anang}\\ \textrm{And}&\textrm{a bisa mengunjunginya di blognya beliau} \end{aligned}$
$.\: \: \: \quad\begin{aligned}\textrm{di}& \end{aligned}$ sini (Soal dan Pembahasan KSM 2019 oleh Pak Anang)