Contoh Soal Distribusi Normal

 $\begin{array}{ll}\\ 1.&\textrm{Fungsi distribusi normal variabel acak X}\\ &\textrm{dengan}\: \: \mu =8\: \: \textrm{dan}\: \: \sigma =2\: \: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad \displaystyle f(x)=\displaystyle \frac{1}{\sqrt{2\pi }}e^{.^{-\frac{(x-8)^{2}}{2}}}\\ &\textrm{b}.\quad \displaystyle f(x)=\displaystyle \frac{1}{\sqrt{2\pi }}e^{.^{-\frac{(x-8)^{2}}{4}}}\\&\textrm{c}.\quad \displaystyle f(x)=\displaystyle \frac{1}{\sqrt{2\pi }}e^{.^{-\frac{(x-8)^{2}}{2}}}\\&\textrm{d}.\quad \displaystyle f(x)=\displaystyle \frac{1}{\sqrt{8\pi }}e^{.^{-\frac{(x-8)^{2}}{4}}}\\&\textrm{e}.\quad \color{red}\displaystyle f(x)=\displaystyle \frac{1}{\sqrt{8\pi }}e^{.^{-\frac{(x-8)^{2}}{8}}}\\\\&\textbf{Jawab}:\quad \textbf{e}\\&\begin{aligned}\displaystyle f(x)&=\displaystyle \frac{1}{\sigma \sqrt{2\pi }}e^{.^{-\displaystyle \frac{1}{2}\left (\frac{x-\mu}{\sigma } \right )^{2}}},\: \:  \textrm{dengan}\: \: \left\{\begin{matrix} \mu =8\\ \sigma =2 \end{matrix}\right.\\&=\displaystyle \frac{1}{2 \sqrt{2\pi }}e^{.^{-\displaystyle \frac{1}{2}\left (\frac{x-8}{2 } \right )^{2}}}\\ &=\color{red}\displaystyle \frac{1}{\sqrt{8\pi }}e^{.^{-\displaystyle \frac{(x-8)^{2}}{8}}} \end{aligned}  \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Jika variabel acak}\: \: Z\: \: \textrm{berdistribusi normal}\\ &\textrm{N}(0,1),\:  \textrm{nilai}\: \: \textrm{P}(Z< 2)\: \: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad \displaystyle \int_{0}^{2}\displaystyle \frac{1}{\sqrt{2\pi }}e^{.^{-\displaystyle \frac{1}{2}\displaystyle z^{2}}}\: dz\\ &\textrm{b}.\quad \displaystyle \int_{2}^{\infty }\displaystyle \frac{1}{\sqrt{2\pi }}e^{.^{-\displaystyle \frac{1}{2}\displaystyle z^{2}}}\: dz\\ &\textrm{c}.\quad \color{red}\displaystyle \int_{-\infty }^{2}\displaystyle \frac{1}{\sqrt{2\pi }}e^{.^{-\displaystyle \frac{1}{2}\displaystyle z^{2}}}\: dz\\ &\textrm{d}.\quad \displaystyle \int_{0}^{2}\displaystyle \frac{1}{\sigma \sqrt{2\pi }}e^{.^{-\displaystyle \frac{1}{2}\left ( \displaystyle \frac{\textrm{x}-\mu }{\sigma } \right )^{2}}}\: dz\\ &\textrm{e}.\quad \displaystyle \int_{0}^{2}\displaystyle \frac{1}{\sigma \sqrt{2\pi }}e^{.^{-\displaystyle \frac{1}{2}\left ( \displaystyle \frac{\textrm{x}-\mu }{\sigma } \right )^{2}}}\: dz\\\\ &\textbf{Jawab}:\quad \textbf{c}\\ &\begin{aligned}&P(\textrm{Z}<2)\: ,\qquad \textrm{Z}\sim \textrm{N}(0,1)\\ &=P(-\infty <\textrm{Z}<0)+P(0<\textrm{Z}<2)\\ &=\color{red}\displaystyle \int_{-\infty }^{2}\displaystyle \frac{1}{\sqrt{2\pi }}e^{.^{-\displaystyle \frac{1}{2}\displaystyle z^{2}}}\: dz \end{aligned}  \end{array}$.

$\begin{array}{ll}\\ 3.&\textrm{Jika luas daerah di bawah kurva}\\ &\textrm{berdistribusi normal pada interval}\: \: \textrm{Z}>z\\ &\textrm{adalah}\: \: L,\: \: \textrm{nilai}\: \: \textrm{P}(-z<Z< z)\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad \displaystyle 0,5+L\\ &\textrm{b}.\quad 0,5-L\\ &\textrm{c}.\quad \displaystyle 1-L\\ &\textrm{d}.\quad \color{red}\displaystyle 1-2L\\ &\textrm{e}.\quad \displaystyle 2L\\\\ &\textbf{Jawab}:\quad \textbf{d}\\ &\begin{aligned}P&(-z<Z<z)\\ &=0,5-L+0,5-L\\ &=\color{red}1-2L\\ &\textrm{Berikut ilustrasi kurva beserta luasnya} \end{aligned}  \end{array}$.

$\begin{array}{ll}\\ 4.&\textrm{Diketahui}\: \: \textrm{X}\: \: \sim \textrm{N}(20,4)\: \: \textrm{dan}\: \:  Z\sim N(0,1)\\ &\textrm{Jika}\: \: P(0<Z<1)=0,3413,\: \: \textrm{maka nilai}\\ &P(X<24)\: \: \textrm{adalah}\: ....\\ &\textrm{a}.\quad \displaystyle 0,1587\\ &\textrm{b}.\quad \displaystyle 0,3174\\ &\textrm{c}.\quad \displaystyle 0,3413\\ &\textrm{d}.\quad \displaystyle 0,6826\\ &\textrm{e}.\quad \color{red}\displaystyle 0,8413\\\\ &\textbf{Jawab}:\quad \textbf{e}\\ &\begin{aligned}&\textrm{Diketahui bahwa}\: \: X\sim N(20,4)\begin{cases} \mu  & =20 \\  \sigma  & =4  \end{cases}\\ &\textrm{Dan diketahui pula}\: \: P(0<Z<1)=0,3413\\ &\textrm{Jika}\: \: Z\sim N(0,1),\: \: \textrm{maka untuk}\: P(X<24)\\ &\textrm{transformasi}\: \: \textrm{x}=24\: \: \textrm{menjadi}\\ &\textrm{z}=\displaystyle \frac{\textrm{x}-\mu }{\sigma }=\frac{24-20}{4}=\frac{4}{4}=1\\ &\textrm{Selanjutnya}\\ &\begin{aligned}P(X<24)&=P(Z<1)\\ &=0,5+P(0<Z<1)\\ &=0,5+0,3413\\ &=\color{red}0,8413 \end{aligned} \end{aligned}  \end{array}$.

$\begin{array}{ll}\\ 5.&\textrm{Nilai kuartil atas dari data}\\ &\textrm{berdistribusi normal baku}=q\\ & \textrm{Pernyataan berikut yang tepat adalah}\: ....\\ &\textrm{a}.\quad \color{red}\textrm{Luas daerah pada}\: (Z<q)=0,25\\ &\textrm{b}.\quad \textrm{Luas daerah pada}\: (Z>q)=0,25\\ &\textrm{c}.\quad \textrm{Luas daerah pada}\: (0<Z<q)=0,25\\ &\textrm{d}.\quad \textrm{Luas daerah pada}\: (Z<-0,25)=q\\ &\textrm{e}.\quad \textrm{Luas daerah pada}\: (0<Z<0,25)=q\\\\ &\textbf{Jawab}:\quad \textbf{a}\\ &\textrm{Pembahasan diserahkan kepada pembaca}\\ &\textrm{yang budiman}  \end{array}$.




Lanjutan 2 Distribusi Normal

D. Menentukan nilai k (batas interval)

Penentuan batas ini adalah kebalikan dari pencarian nilai luasan di bawah kurva

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Dengan bantuan tabel distribusi normal}\\ &\textrm{tentukan nilai}\: \: k\: \: \textrm{pada}\: \: P(Z\leq k)=0,9834\\\\ &\textbf{Jawab}:\\ &\begin{aligned}P(Z\leq k)&=P(Z\leq 0)+P(0\leq Z\leq k)\\ &=0,9834> 0,5\\ 0,9834&=0,5+P(0\leq Z\leq k)\\ P(0\leq Z\leq k)&=0,9834-0,5=0,4834\\ &=P(0\leq Z\leq \color{red}2,13\color{black})\\ \therefore \quad k&=\color{red}2,13 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Dengan bantuan tabel distribusi normal}\\ &\textrm{tentukan nilai}\: \: k\: \: \textrm{pada}\: \: P(Z\geq k)=0,3669\\\\ &\textbf{Jawab}:\\ &\begin{aligned}P(0\leq Z\leq \infty )&=P(0\leq Z\leq k)+P(k\leq Z\leq \infty )\\ 0,5&=P(0\leq Z\leq k)+0,3669\\ P(0\leq Z\leq k)&=0,5-0,3669=0,1331\\ &=P(0\leq Z\leq \color{red}0,34\color{black})\\ \therefore \quad k&=\color{red}0,34 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 3.&\textrm{Dengan tabel distribusi normal, tentukan}\\ &\textrm{nilai}\: \: k\: \: \textrm{pada}\: \: P(-k\leq Z\leq k)=0,9854\\\\ &\textbf{Jawab}:\\ &\begin{aligned}P(-k\leq Z\leq k)&=P(-k\leq Z\leq 0)+P(0\leq Z\leq k)\\ &=2\times P(0\leq Z\leq k)\\ 0,9854&=2\times P(0\leq Z\leq k)\\ P(0\leq Z\leq k)&=\displaystyle \frac{0,9854}{2}=0,4972\\ &=P(0\leq Z\leq \color{red}2,77\color{black})\\ \therefore \quad k&=\color{red}2,77 \end{aligned} \end{array}$.

E. Pendekatan distribusi binomial dengan distribusi normal

Pada kasus distribusi binomial (distribusi Bernoulli) terdapat jumlah sampel yang besar, misalkan untuk $n=\color{red}60$, maka penghitungan dengan menggunakan metode ini akan memakan waktu yang lama. Penghitungan yang lebih ringkas dengan tingkat ketelitian hasil yang baik adalah dapat kita gunakan penghitungan dengan distribusi normal (distibusi Gauss) dengan syarat  $Np\geq 5$  dan  $N(1-p)\geq 5$.

$\begin{array}{|c|c|l|l|}\hline \textrm{Notasi}&\textrm{Dibaca}&\textrm{Istilah}&\textrm{Rumus}\\\hline \mu &\textrm{mu}&\textrm{rata-rata}&\mu =Np\\\hline \sigma ^{2}&&\textrm{Variansi}&\sigma ^{2}=Npq\\\hline \sigma &\textrm{sigma}&\textrm{simpangan baku}&\sigma =\sqrt{Npq}\\\hline \end{array}$.

Dengan

$\begin{aligned}&\color{red}\textrm{Dengan rumus distribusi binomial}\\ &P(X=\textrm{x})=b(\textrm{x};n;p)\\ &\qquad\qquad\: =\displaystyle \frac{n!}{\textrm{x}!.(n-\textrm{x})!}.p^{\textrm{x}}.q^{n-\textrm{x}}=\begin{pmatrix} n\\ \textrm{x} \end{pmatrix}..p^{\textrm{x}}.q^{n-\textrm{x}}\\ &\color{red}\textrm{Dengan rumus distribusi normal}\\ &\textrm{nilai}\: \: Z-\textrm{score, untuk x adalah}\: :\: Z=\displaystyle \frac{\textrm{x}-\mu }{\sigma } \end{aligned}$.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Dari 64 kali percobaan melempar sebuah}\\ &\textrm{uang logam peubah acak}\: \: X\: \: \textrm{menyatakan}\\ &\textrm{banyak kemunculan sisi angka, tentukan}\\ &\textrm{a}.\quad \textrm{mean}\\ &\textrm{b}.\quad \textrm{standar deviasi atau simpangan baku}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Misal}\: p=\textrm{peluang kejadian muncul angka}\\ &p=\color{red}\displaystyle \frac{1}{2}\color{black},\: \: \textrm{maka}\: \:  q=1-p=1-\displaystyle \frac{1}{2}=\color{blue}\frac{1}{2}\\ &\textrm{dengan}\: \:  N=64\\ &\textrm{maka}\\ &\textrm{a}.\quad\mu =N.p=64\times \displaystyle \frac{1}{2}=\color{red}32\\ &\textrm{b}.\quad \sigma  =\sqrt{N.p.q}=\sqrt{64\times \displaystyle \frac{1}{2}\times \frac{1}{2}}=\sqrt{16}\\ &\qquad\: \: =\color{red}4 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Tentukan probabilitas perolehan 5 sisi angka}\\&\textrm{pada pelemparan sebuah uang logam sebanyak }\\ &\textrm{12 kali}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\color{red}\textrm{Dengan rumus distribusi binomial}\\ &\textrm{Diketahui}\: \: n=12,\: \textrm{x}=5,\: \textrm{dan}\: \: p=\displaystyle \frac{1}{2},\: q=1-p\\ &P(X=\textrm{x})=b(\textrm{x};n;p)\\ &\qquad\qquad\: =\displaystyle \frac{n!}{\textrm{x}!.(n-\textrm{x})!}.p^{\textrm{x}}.q^{n-\textrm{x}}=\begin{pmatrix} n\\ \textrm{x} \end{pmatrix}..p^{\textrm{x}}.q^{n-\textrm{x}}\\ &P(\textrm{x}=5)=b(5;12;\displaystyle \frac{1}{2})\\ &\qquad\qquad\: =\begin{pmatrix} 12\\ 5 \end{pmatrix}.\left ( \displaystyle \frac{1}{2} \right )^{5}.\left ( 1-\displaystyle \frac{1}{2} \right )^{12-5}\\ &\qquad\qquad\: =\displaystyle \frac{12!}{5!.7!}.\left ( \displaystyle \frac{1}{2} \right )^{12}\\ &\qquad\qquad \: =\displaystyle \frac{792}{4048}=\color{red}0,1934\quad \color{black}(\textrm{Pembulatan 4D}) \end{aligned}\\ &\begin{aligned}&\color{red}\textrm{Dengan rumus distribusi normal}\\ &\mu =n.p=12.\left ( \displaystyle \frac{1}{2} \right )=6\\ &\sigma =\sqrt{npq}=\sqrt{12.\left ( \displaystyle \frac{1}{2} \right )\left ( 1-\displaystyle \frac{1}{2} \right )}=\sqrt{3}\\ &\: \: \: =1,7321\\ &\textrm{nilai}\: \: Z-\textrm{score, untuk x di antara}\\ &4,5\: \: \textrm{dan}\: \: 5,5\\ &Z_{1}=\displaystyle \frac{\textrm{x}_{1}-\mu }{\sigma }=\displaystyle \frac{4,5-6}{1,7321}=-0,87\\ &\Rightarrow P(Z=0,87)=0,3078\\ &Z_{2}=\displaystyle \frac{\textrm{x}_{2}-\mu }{\sigma }=\displaystyle \frac{5,5-6}{1,7321}=-0,29\\ &\Rightarrow P(Z=0,29)=0,1141\\ &\textrm{Luasan}\: \: 4,5\: \: \textrm{hingga}\: \: 5,5\\ &=0,3078-0,1141=\color{red}0,1937 \end{aligned}\\ &\color{blue}\textrm{Perbedaan selisihnya adalah}\\ &=0,1937-0,1934=\color{red}0,0003 \end{array}$ .

$\begin{array}{ll}\\ 3.&\textrm{Pada soal nomor 1 di atas, carilah probabilitas}\\&\textrm{mendapatakan 2 sisi angka dan probabilitas}\\ &\textrm{mendapatkan sisi angka kurang dari 50}\\\\ &\textbf{Jawab}:\\ &\begin{aligned} &\bullet \quad \textrm{untuk}\: \: x=2,\: n=64,\: \textrm{dan}\: \: p=\displaystyle \frac{1}{2},\: q=1-p\\ &P(X=\textrm{x})=b(\textrm{x};n;p)\\ &\qquad\qquad\: =\displaystyle \frac{n!}{\textrm{x}!.(n-\textrm{x})!}.p^{\textrm{x}}.q^{n-\textrm{x}}=\begin{pmatrix} n\\ \textrm{x} \end{pmatrix}..p^{\textrm{x}}.q^{n-\textrm{x}}\\ &\qquad \textrm{maka}\: \: P(X=2)=P(x=2)\\ &\qquad P(x=2)=\begin{pmatrix} 64\\ 2 \end{pmatrix}\left ( \displaystyle \frac{1}{2} \right )^{2}\left ( \displaystyle \frac{1}{2} \right )^{64-2}\\ &\qquad =\displaystyle \frac{64\times 63}{2}\times \left ( \displaystyle \frac{1}{2} \right )^{64}=\displaystyle \frac{4032}{2^{65}}\\ &\color{blue}\textbf{Alternatif 1}\\ &\bullet \quad P(X< 50)=P(x=0)+P(x=1)\\ &\qquad +P(x=2)+P(x=3)+...+P(x=49)\\ \end{aligned}\\ &\begin{aligned}&\color{blue}\textbf{Alternatif 2}\\ &\textrm{Diketahui}\: \: \mu =32,\: \: \sigma =4,\: \: \textrm{dan}\: \: x=50\\ &z=\displaystyle \frac{x-\mu }{\sigma }=\frac{50-32}{4}=\frac{18}{4}=4,5\\ &\textrm{maka nilai}\\ &P(x< 50)=P(z< 4,5)\\ &\qquad\: \: \qquad =P(z\leq 0)+P(0\leq z< 4,5)\\ &\qquad\: \: \qquad =0,5+0,4999\\ &\qquad\: \: \qquad =\color{red}0,9999 \end{aligned} \end{array}$.


DAFTAR PUSTAKA
  1. Tasari, Aksin, N., Miyanto, Muklis. 2016. Matematika untuk SMA/MA Kelas XII Peminatan Matematika dan Ilmu-Ilmu Alam. Klaten: INTAN PARIWARA.
  2. Noormandiri, B.K. 2017. Matematika Jilid 3 untuk SMA/MA Kelas XII Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA.
  3. Sari, B.-------. Pendekatan Binomial untuk Kasus Distribusi Normal. pada https://dosen.yai.ac.id/v5/dokumen/materi/030013/103_20211207093237_Pertemuan%2010_Pendekatan%20Binomial%20Untuk%20Kasus%20Distribusi%20Normal.pdf 


Lanjutan 1 Distribusi Normal

 B. Pengertian Distribusi Normal

Distribusi normal adalah salah satu distribusi model variabel acak kontinue yang sangat penting dalam probabilitas.

Distribusi normal yang juga dikenal dengan distribusi Gaussian ini memiliki grafik berbentuk bel/lonceng yang selanjutnya juga dikenal dengan kurva normal karena bentuk kurvanya seperti lonceng. Persamaan kurva  tersebut dinamakan dengan fungsi distribusi normal. Adapun fungsi distribusi normal untuk variabel acak kontinue X atau $X\sim N(\mu ,\sigma ^{2})$ didefinisikan dengan.

$\begin{aligned}&f(x)=\displaystyle \frac{1}{\sigma \sqrt{2\pi }}.e^{.^{-\frac{1}{2}\left ( \displaystyle \frac{x -\mu }{\sigma } \right )^{2}}}\\ &\textrm{Dengan}\\ &\sigma :\: \textrm{parameter untuk standar deviasi}\\ &\mu :\: \textrm{parameter untuk rata-rata (mean)}\\ &e:\: \textrm{Kontanta alam (2,718...)}\\ &\textrm{Dengan domain fungsi}\: \: f\: \: -\infty < x< \infty\\   \end{aligned}$.

 B. Pengertian Distribusi Normal Standar (Baku)

Jika pada fungsi distribusi probabilitas memilii nilai $\mu =0$  dan  $\sigma =1$, maka aan didapatkan bentu distribusi normal standar.  Variabel acak z yang berdistribusi normal satndar dinotasian dengan $Z\sim N(0,1)$. Adapun untuk gambar kurva normalnya $\textrm{N}(0,1)$  adalah sebagai berikut

Untuk variabel acak X berdistribusi normal dilambangkan dengan $\textrm{X}\sim \textrm{N}(\mu,\sigma^{2})$. Selanjutnya jika $\mu=0$ dan $\sigma=1$, maka akan diperoleh distribusi normal standar (baku) yaitu $\textrm{N}(0,1)$ seperti keterangan di atas. Dan rumus fungsi variabel acak Z yang berdistribusi normal  baku adalahh: $f(z)=\displaystyle \frac{1}{\sqrt{2\pi}}\textrm{e}^{.^{-\frac{1}{2}Z^{2}}}$.

Karena kurva di atas adalah kurva dari grafik fungsi peluang, maka luas yang dibatasi adalah garfik fungsi dan sumbu mendatarnya adalah berharga 1, atau dapat juga dituliskan
$\int_{-\infty }^{\infty }f(z)dz=\int_{-\infty }^{\infty }\displaystyle \frac{1}{\sqrt{2\pi}}\textrm{e}^{.^{-\frac{1}{2}Z^{2}}}dz=1$.
Karena grafik simetris terhadap garis $\mu=0$, maka luas di kiri dan kanan garis $\mu=0$ bernilai $0,5$ atau
$\int_{-\infty }^{0 }f(z)dz=\int_{-\infty }^{0 }\displaystyle \frac{1}{\sqrt{2\pi}}\textrm{e}^{.^{-\frac{1}{2}Z^{2}}}dz=0,5$ dan $\int_{0 }^{\infty }f(z)dz=\int_{0}^{\infty }\displaystyle \frac{1}{\sqrt{2\pi}}\textrm{e}^{.^{-\frac{1}{2}Z^{2}}}dz=0,5$.



C. Penghitungan luas di Bawah Kurva Distribusi Normal Standar

C. 1 Penghitungan luasan di bawah kurva Normal Standar

Penentuan luas wilayah ini sangatlah tidak mudah karena melibatkan banyak aspek, tetapi ada cara lain dalam penentuan luas daerah di bawah kurva normal standar, yaitu dengan bantuan tabel distribusi $\textrm{Z}$ sebagaimana tabel sederhana berikut
Sumber dari gambar di atas adalah dari screenshot dari youtube Channel Ari Susanti  

Probabilitas variabel acak $X\sim N(\mu ,\sigma ^{2})$ luasan di bawah kurvanya akan senilai dengan luasan di bawah kurva normal standar $Z\sim N(0,1)$ dengan cara mentransformasikan dari variabel acak normal $X$ menjadi variabel acak $Z$ dengan rumus:
$Z=\displaystyle \frac{X-\mu }{\sigma }$.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Diketahui}\: \: X\sim N(28,169).\: \textrm{Tentukan}\\ &\textrm{nilai}\: \: P(15,8\leq \textrm{x}\leq 56,6)\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&X\sim N(\mu ,\sigma ^{2})\Leftrightarrow X\sim N(28,169)\\ &\mu =28,\: \: \sigma ^{2}=169\Rightarrow \sigma =\sqrt{169}=13\\ &\textrm{Penentuan nilai}\: \: P(15,8<x<56,6)\: \: \textrm{adalah}:\\ &\textrm{Untuk}\: \: \textrm{x}=\color{red}15,8\\ &\bullet \quad\textrm{x}_{1}=15,8\Rightarrow z_{1}=\displaystyle \frac{\textrm{x}_{1}-\mu }{\sigma }\\ &\: \: \: \quad\quad\quad\quad\quad\quad\quad\quad=\displaystyle \frac{15,8-28}{13}=-0,94\\ &\textrm{Untuk}\: \: \textrm{x}=\color{red}56,6\\ &\bullet \quad\textrm{x}_{2}=56,6\Rightarrow z_{1}=\displaystyle \frac{\textrm{x}_{2}-\mu }{\sigma }\\ &\: \: \: \quad\quad\quad\quad\quad\quad\quad\quad=\displaystyle \frac{56,6-28}{13}=2,2\\ &\textrm{maka nilai}\\ &P(15,8\leq \textrm{x}\leq 56,6)\\ &=P(-0,94\leq z\leq 2,2)\\ &=P(0\leq z\leq 0,94)+P(0\leq z\leq 2,2)\\ &=0,3264+0,4861\\ &=\color{red}0,8125 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Tentukan}\: \: P(78<x<116)\: \: \textrm{jika mean}\: \: \mu =104\\ &\textrm{dan simpangan baku}\: \: \sigma =10\\\\ &\textbf{Jawab}:\\ &\begin{aligned} &\textrm{Diketahu bahwa}\: \: \: \color{blue}\mu =104\color{black},\: \: \color{blue}\sigma =10\\ &\textrm{Penentuan nilai}\: \: P(78<x<116)\: \: \textrm{adalah}:\\ &\textrm{Untuk}\: \: \textrm{x}=\color{red}78\\ &\bullet \quad\textrm{x}_{1}=78\Rightarrow z_{1}=\displaystyle \frac{\textrm{x}_{1}-\mu }{\sigma }\\ & \quad\quad\quad\quad\quad\quad\quad\quad=\displaystyle \frac{78-104}{10}=\frac{26}{10}=-2,6\\ &\textrm{Untuk}\: \: \textrm{x}=\color{red}116\\ &\bullet \quad\textrm{x}_{2}=116\Rightarrow z_{1}=\displaystyle \frac{\textrm{x}_{2}-\mu }{\sigma }\\ &\: \quad\quad\quad\quad\quad\quad\quad\quad=\displaystyle \frac{116-104}{10}=\frac{12}{10}=1,2\\ &\textrm{maka nilai}\\ &P(78<x<116)=P(78\leq \textrm{x}\leq 116)\\ &=P(-2,6\leq z\leq 1,2)\\ &=P(0\leq z\leq 2,6)+P(0\leq z\leq 1,2)\\ &=0,4953+0,3849\\ &=\color{red}0,8802 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 3.&\textrm{Sebuah mesin memproduksi baut dengan}\\ &\textrm{bahan logam. Panjang baut yang diproduksi}\\ &\textrm{berdistribusi normal dengan mean}\: 19,8\: \: \textrm{cm}\\ &\textrm{dan standar deviasi}\: 0,3\: \: \textrm{cm}.\: \textrm{Jika diambil baut}\\ &\textrm{secara acak, tentuan terambil baut dengan}\\ &\textrm{panjang antara 19,7 cm dan 20 cm}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\mu =19,8\: \: \textrm{cm},\: \: \sigma =0,3\: \: \textrm{cm}\\ &\textrm{Penentuan panjang}\: \: P(19,7<x<20)\: \: \textrm{adalah}:\\ &\textrm{Untuk}\: \: \textrm{x}=\color{red}19,7\\ &\bullet \quad\textrm{x}_{1}=19,7\Rightarrow z_{1}=\displaystyle \frac{\textrm{x}_{1}-\mu }{\sigma }\\ &\: \: \: \quad\quad\quad\quad\quad\quad\quad\quad=\displaystyle \frac{19,7-19,8}{0,3}=-0,33\\ &\textrm{Untuk}\: \: \textrm{x}=\color{red}20\\ &\bullet \quad\textrm{x}_{2}=20\Rightarrow z_{1}=\displaystyle \frac{\textrm{x}_{2}-\mu }{\sigma }\\ &\: \: \: \quad\quad\quad\quad\quad\quad\quad\quad=\displaystyle \frac{20-19,8}{0,3}=0,67\\ &\textrm{maka nilai}\\ &P(19,7\leq \textrm{x}\leq 20)\\ &=P(-0,33\leq z\leq 0,67)\\ &=P(0\leq z\leq 0,33)+P(0\leq z\leq 0,67)\\ &=0,1293+0,2486\\ &=\color{red}0,3779 \end{aligned} \end{array}$.

C. 2 Penghitungan luasan di bawah dengan Interval  Tertentu

Luasan daerah dibawah kurva normal baku pada interval  $z_{1}<\textrm{Z}<z_{2}$ dapat dituliskan sebagai  $P(z_{1}<\textrm{Z}<z_{2})=\displaystyle \int_{z_{1}}^{z_{2}}\displaystyle \frac{1}{\sqrt{2\pi }}e^{.^{-\frac{1}{2}Z^{2}}}dz$.
Perhatikanlah ilustrasi berikut ini


$\LARGE\colorbox{yellow}{CONTOH SOAL}$.



$\begin{array}{ll}\\ 1.&\textrm{Perhatikanlahdaerah berarsir pada kurva normal}\\ &\textrm{berikut untuk interval}\: \: 0<\textrm{Z}<1,25 \end{array}$.

$.\qquad\begin{aligned}&\textrm{a}.\quad \textrm{Nyatakan dengan bentuk integral yang menyatakan}\\ &\: \: \: \, \quad \textrm{luas daerah yang terarsir}\\ &\textrm{b}.\quad \textrm{Tentukan luas daerah yang diarsir dengan bantuan}\\ &\: \: \: \, \quad \textrm{tabel distribusi normal baku}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad &\textrm{Diketahui fungsi normal baku dalam variabel}\: z\: \: \textrm{adalah}:\\ &f(z)=\color{purple}\displaystyle \frac{1}{\sqrt{2\pi}}\textrm{e}^{.^{-\frac{1}{2}Z^{2}}}\\ &\textrm{maka daerah yang diarsir pada interval}\: \: 0<\textrm{Z}<1,25\\ &\textrm{Yaitu}:\\ &L=\displaystyle \int_{0}^{1,25}f(z)dz=\color{red}\displaystyle \int_{0}^{1,25}\displaystyle \frac{1}{\sqrt{2\pi}}\textrm{e}^{.^{-\frac{1}{2}Z^{2}}}dz\\ \textrm{b}.\quad&\textrm{Adapaun cara tabel adalah sebagai berikut}\\ &\textrm{Lihat gambar di atas, yaitu}:\: \color{blue}0,3944  \end{aligned} \end{aligned}$.

$\begin{array}{ll}\\ 2.&\textrm{Pada interval berikut, tentukanlah luas}\\ &\textrm{daerah dibawah kurva normbal baku}\\ &\textrm{a}.\quad \textrm{Z}>0,96\\ &\textrm{b}.\quad -0,72<\textrm{Z}<2,08\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Karena luas daerah di kanan garis}\: z=0\\ &\textrm{maka luas}:\: 0,96<\textrm{Z}<\infty \\ &\begin{array}{|c|c|c|}\hline z&z&\begin{matrix} \color{red}6\\  \downarrow \end{matrix} \\\hline 0&\color{red}0,9\color{black}\rightarrow &\color{blue}0,3315\\\hline \end{array}\\ &\textrm{Jadi, luasnya}=0,5-0,3315=0,1685 \end{aligned}\\ &\begin{aligned}\textrm{b}.\quad&\textrm{Karena luas daerah di kiri dan kanan garis}\: z=0\\ &\textrm{maka luas}:\: -0,72<\textrm{Z}<2,08\: \textrm{atau}\: \: \textrm{P}(-0,72<\textrm{Z}<2,08)\\ &\underline{\textrm{Untuk}}\: :\: -0,72<\textrm{Z}<0=0<\textrm{Z}<0,72\\ &\begin{array}{|c|c|c|}\hline z&z&\begin{matrix} \color{red}2\\  \downarrow \end{matrix} \\\hline 0&\color{red}0,7\color{black}\rightarrow &\color{blue}0,2642\\\hline \end{array}\\ &\underline{\textrm{Sedangkan untuk}}\: :\: 0<\textrm{Z}<2,08\\ &\begin{array}{|c|c|c|}\hline z&z&\begin{matrix} \color{red}8\\  \downarrow \end{matrix} \\\hline 0&\color{red}2,0\color{black}\rightarrow &\color{blue}0,4812\\\hline \end{array}\\ &\textrm{Jadi, luasnya}=\color{blue}0,2642\color{black}+\color{blue}0,4812\color{black}=\color{blue}0,7454\\ &\textrm{Berikut ilustrasinya} \end{aligned}  \end{array}$.


$\begin{array}{ll}\\ 3.&\textrm{Tentukanlah besar peluang dari variabel}\\ &\textrm{variabel acak Z berdistribusi normal baku}\\ &\textrm{a}.\quad \textrm{P}(\textrm{Z}<1,2)\\ &\textrm{b}.\quad \textrm{P}(0,32<\textrm{Z}<1,5)\\\\ &\textbf{Jawab}:\\ &\textrm{3. a. Perhatikan ilustrasi berikut ini} \end{array}$.

$.\: \qquad\begin{aligned}&\textrm{Karena luas daerah di kiri dan kanan garis}\: z=0\\ &\textrm{maka luas}:\: \textrm{P}(\textrm{Z}<1,2)=\textrm{P}(-\infty <\textrm{Z}<1,2) \\ &\begin{array}{|c|c|c|}\hline z&z&\begin{matrix} \color{red}0\\  \downarrow \end{matrix} \\\hline 0&\color{red}1,2\color{black}\rightarrow &\color{blue}0,3849\\\hline \end{array}\\ &\textrm{Jadi, luasnya}=0,5+0,3315=0,8849 \end{aligned}$.

$.\quad\begin{aligned}3.b\: \: &\textrm{Untuk}\: \: \textrm{P}(0,32<\textrm{Z}<1,5)\\ &\textrm{Perhatikan ilsutrasi berikut} \end{aligned}$.
$.\: \: \qquad\begin{aligned}&\textrm{Karena luas daerah di kanan garis}\: z=0\\ &\textrm{maka luas}:\: 0,32<\textrm{Z}<1,5\\ &\underline{\textrm{Untuk}}\: :\: 0<\textrm{Z}<0,32\\ &\begin{array}{|c|c|c|}\hline z&z&\begin{matrix} \color{red}2\\  \downarrow \end{matrix} \\\hline 0&\color{red}0,3\color{black}\rightarrow &\color{blue}0,1255\\\hline \end{array}\\&\underline{\textrm{Sedangkan untuk}}\: :\: 0<\textrm{Z}<1,5\\ &\begin{array}{|c|c|c|}\hline z&z&\begin{matrix} \color{red}0\\  \downarrow \end{matrix} \\\hline 0&\color{red}1,5\color{black}\rightarrow &\color{blue}0,4332\\\hline \end{array}\\ &\textrm{Jadi, luasnya}=\color{blue}0,4332\color{black}-\color{blue}0,1255\color{black}=\color{blue}0,3077\\ \end{aligned}$ .

DAFTAR PUSTAKA
  1. Tasari, Aksin, N., Miyanto, Muklis. 2016. Matematika untuk SMA/MA Kelas XII Peminatan Matematika dan Ilmu-Ilmu Alam. Klaten: INTAN PARIWARA.
  2. Noormandiri, B.K. 2017. Matematika Jilid 3 untuk SMA/MA Kelas XII Kelompok Peminatan Matematika dan Ilmu-Ilmu Alam. Jakarta: ERLANGGA.



Distribusi Normal

A. Fungsi Probabilitas Kontinu

Jika pada distribusi peluang diskrit nilai  x diperjelas lagi menjadi nilai eksak atau kontinue, maka distribusi peluangnya akan berubah menjadi distribusi peluang kontinu.
Luas seluruh daerah di dalam kurva memiliki luas 1. Luas daerah pada wilayah yang diarsi (warna kuning) yang terletak antara X=a  dan X=b dapat dinyatakan dengan :  $P(a\leq X\leq b)=\displaystyle \int_{a}^{b}f(x)\: \: dx$.
Sehingga peluang untu semua nilai x yang berada pada selang  $(a,b)$ adalah sama dengan luas kerapatan di bawah kurva antara batas  $x=a$  dan  $x=b$.
  • $0\leq f(x)\leq 1$ untuk setiap nilai $x$.
  • $\int_{-\infty }^{\infty }\displaystyle f(x)\: dx=1$
  • $P(a\leq x\leq b)=\int_{a}^{b}\displaystyle f(x)\: dx$.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Fungsi peluang lama bicara seorang}\\ &\textrm{operator sebagai berikut}\\ &f(x)=\begin{cases} kx &\textrm{untuk}\: \: 0\leq k\leq 5 \\ k(10-x)&\textrm{untuk}\: \: 5\leq k\leq 10\\ \qquad 0 &\textrm{untuk}\: \: x\: \: \textrm{yang lain} \end{cases}\\ &\textrm{Tentukanlah}\\ &\textrm{a}.\quad \textrm{Nilai}\: \: k\\ &\textrm{b}.\quad \textrm{Peluang operator telpon berbicara}\\ &\qquad \textrm{lebih dari 8 menit}\\ &\qquad \textrm{Peluang operator telpon berbicara}\\ &\qquad \textrm{2 sampai 4 menit}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Karena}\: \: f(x)\: \: \textrm{adalah fungsi peluang, maka}\\ &\displaystyle \int_{0}^{5}kx\: dx+\int_{5}^{10}k(10-x)\: dx=1\\ &\Leftrightarrow \left [ \displaystyle \frac{1}{2}kx^{2} \right ]_{0}^{5}+\left [ 10kx-\displaystyle \frac{1}{2}kx^{2} \right ]_{5}^{10}=1\\ &\Leftrightarrow \displaystyle \frac{1}{2}k(5^{2}-0^{2})+\left ( 10k(10-5)-\displaystyle \frac{1}{2}k(10^{2}-5^{2}) \right )=1\\ &\Leftrightarrow \displaystyle \frac{1}{2}k(25)+10k(5)-\displaystyle \frac{1}{2}k(100-25)=1\\ &\Leftrightarrow \displaystyle \frac{25}{2}k+50k-\displaystyle \frac{75}{2}k=1\\ &\Leftrightarrow 50k-25k=1\\ &\Leftrightarrow 25k=1\\ &\Leftrightarrow k=\color{red}\displaystyle \frac{1}{25}\\ \textrm{b}.\quad&\textrm{Misalkan saja}\\ &X=\textrm{lama operator telpon bicara}\\ &\textrm{Peluang operator berbicara lebih}\\ &\textrm{dari 8 menit}=P(X>8),\\ &P(X>8)=P(8<X\leq 10)\\ &\quad\qquad =\displaystyle \int_{8}^{10}k(10-x)\: dx\\ &\quad\qquad =\displaystyle \int_{8}^{10}\frac{1}{25}(10-x)\: dx\\ &\quad\qquad =\displaystyle \frac{1}{25}\left [ 10x-\displaystyle \frac{1}{2}x^{2} \right ]_{8}^{10}\\ &\quad\qquad =\displaystyle \frac{1}{25}\left ( 10(10-8)-\displaystyle \frac{1}{2}(10^{2}-8^{2}) \right )\\ &\quad\qquad =\displaystyle \frac{1}{25}\left ( 10.(2)-\displaystyle \frac{1}{2}(100-64) \right )\\ &\quad\qquad =\displaystyle \frac{1}{25}\left ( 20-\displaystyle \frac{1}{2}(36) \right )\\ &\quad\qquad =\displaystyle \frac{1}{25}(20-18)\\ &\quad\qquad =\displaystyle \frac{1}{25}(2)=\color{red}\frac{2}{25}=0,08\\ \textrm{c}.\quad&\textrm{Peluang operator telpon berbicara}\\ &P(2\leq X\leq 4)\\ &=\displaystyle \int_{2}^{4}kx\: dx\\ &=\displaystyle \int_{2}^{4}\displaystyle \frac{1}{25}x\: dx\\ &=\displaystyle \frac{1}{25}\left [ \displaystyle \frac{1}{2}x^{2} \right ]_{2}^{4}\\ &=\displaystyle \frac{1}{25}\times \frac{1}{2}(4^{2}-2^{2})\\ &=\displaystyle \frac{1}{50}(16-4)\\ &=\color{red}\displaystyle \frac{12}{50}=0,24 \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Diketahui}\: \: x\: \: \textrm{adalah variabel acak kontinu}\\ &\textrm{yang nilanya berada pada rentang 2 dan 6}\\ &\textrm{dengan fungsi kepekatannya}\: \: f(x)=\displaystyle \frac{1}{20}(x+1).\\ &\textrm{Tunjukkan bahwa}\: \: \: P(2< x< 6)=\textbf{1}\\\\ &\textbf{Jawab}:\\ &\color{blue}\textbf{Alternatif 1}\\ &\begin{aligned}P(2<x<6)&=\int_{2}^{6}\displaystyle f(x)\: dx\\ &=\int_{2}^{6}\displaystyle \frac{1}{20}(x+1)\: dx\\ &=\displaystyle \frac{1}{20}\int_{2}^{6}\displaystyle (x+1)\: dx\\ &=\displaystyle \frac{1}{20}\left (\displaystyle \frac{x^{2}}{2}+x  \right )|_{2}^{6}\\ &=\displaystyle \frac{1}{20}\left (\displaystyle \frac{6^{2}}{2}+6  \right )-\displaystyle \frac{1}{20}\left (\displaystyle \frac{2^{2}}{2}+2  \right )\\ &=\displaystyle \frac{1}{20}(18+6)-\displaystyle \frac{1}{20}(2+2)\\ &=\displaystyle \frac{1}{20}(24-4)\\ &=\displaystyle \frac{20}{20}\\ &=1\: \: \quad (\textbf{terbukti}) \end{aligned}\\ &\color{blue}\textbf{Alternatif 2}\\ &\begin{aligned}P(2<x<6)&=\int_{2}^{6}\displaystyle f(x)\: dx=1\\ 1&=\int_{2}^{6}\displaystyle \frac{1}{20}(x+1)\: dx\\ 1&=\displaystyle \frac{1}{20}\int_{2}^{6}\displaystyle (x+1)\: dx\\ 20&=\int_{2}^{6}\displaystyle (x+1)\: dx\\ 20&=\left (\displaystyle \frac{x^{2}}{2}+x  \right )|_{2}^{6}\\ 20&=\left (\displaystyle \frac{6^{2}}{2}+6  \right )-\left (\displaystyle \frac{2^{2}}{2}+2  \right )\\ 20&=(18+6)-(2+2)\\ 20&=20\: \: \quad (\textbf{terbukti}) \end{aligned} \end{array}$.

Sifat-sifat fungsi probabilitas kontinu adalah sebagai berikut

  • Modusnya berupa nilai x tertinggi pada interval [a,b]
  • Median ($m $) adalah hasil dari persamaan yang melibatan  $\int_{a}^{m}\displaystyle f(x)dx=\displaystyle \frac{1}{2}$.
  • Mean ($\mu $) dirumuskan dengan $\mu =\int_{a}^{b}\displaystyle xf(x)\: dx$.
  • Varian dirumuskan dengan  $var\: (X)=\int_{a}^{b}x^{2}f(x)\: dx-\mu ^{2}$.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{array}{ll}\\ 3.&\textrm{Diketahui suatu fungsi probabilitas}\\ &f(x)=\left\{\begin{matrix}1-\displaystyle \frac{1}{2}x\: ,\: \textrm{pada}\: \: [0,2]\\ \\ 0,\: \:  \textrm{pada}\: \: x\: \: \textrm{yang lain} \end{matrix}\right.\\ &\textrm{a}.\quad \textrm{Buktian pernyataan di atas benar}\\ &\textrm{b}.\quad \textrm{Carilah mean, modus, dan mediannya}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad &\textrm{Akan ditunjukkan}\: \: \int_{0}^{2}\displaystyle f(x)\: dx=1\\ &\int_{0}^{2}\displaystyle f(x)\: dx=\int_{0}^{2}\displaystyle \left ( 1-\displaystyle \frac{1}{2}x \right )\: dx\\ &=\left (x-\displaystyle \frac{1}{4}x^{2}  \right )|_{0}^{2}\\ &=\left ( 2-\displaystyle \frac{1}{4}.2^{2} \right )-(0-\displaystyle \frac{1}{4}.0^{2})\\ &=(2-1)-(0-0)=1\: \: (\textbf{Terbukti}) \end{aligned}\\ &\begin{aligned}\textrm{b}.\quad (1)\: &\textrm{Mean}=\mu =\: \: \int_{a}^{b}x\displaystyle f(x)\: dx\\ &=\int_{0}^{2}x\displaystyle \left ( 1-\displaystyle \frac{1}{2}x \right )\: dx=\int_{0}^{2}\displaystyle \left (x-\displaystyle \frac{1}{2}x^{2}  \right )dx\\ &=\left (\displaystyle \frac{1}{2}x^{2}-\displaystyle \frac{1}{6}x^{3}  \right )|_{0}^{2}\\ &=\left ( 2-1\displaystyle \frac{2}{6} \right )-(0)\\ &=\displaystyle \frac{2}{3} \end{aligned}\\ &\begin{aligned}\textrm{b}.\quad (2)\: &\textrm{Medus}=\textrm{nilai maksimum dari}\: \: f(x)\\ &f(x)=1-\displaystyle \frac{1}{2}x,\: \: \textrm{akan maksimum saat}\: x=0\\&\textrm{maka},\: \: f(0)=1-\displaystyle \frac{1}{2}.0=1-0=1 \end{aligned}\\ &\begin{aligned}\textrm{b}.\quad (3)\: &\textrm{Median}=\textrm{nilai}\: \: m\: \: \textrm{pada}\: \: \int_{0}^{m}\displaystyle f(x)dx=\displaystyle \frac{1}{2}\\ &\textrm{maka}\\ &\displaystyle \frac{1}{2}=\int_{0}^{m}\displaystyle \left ( 1-\displaystyle \frac{1}{2}x \right )dx=\left ( x-\displaystyle \frac{1}{4}x^{2} \right )|_{0}^{m}\\ &\Leftrightarrow \displaystyle \frac{1}{2}=\left ( m-\displaystyle \frac{1}{4}m^{2} \right )-0\\ &\Leftrightarrow m^{2}-4m+2=0\\&\Leftrightarrow m_{1,2}=\displaystyle \frac{4\pm \sqrt{16-4(1)(2)}}{2}\\ &\Leftrightarrow \: \, \quad\quad =\displaystyle \frac{4\pm 2\sqrt{2}}{2}=2\pm \sqrt{2}\\ &\Leftrightarrow \quad m_{1}=2+\sqrt{2}\: \: (\textrm{tidak memenuhi})\\ &\quad\qquad\qquad\textrm{lihat batas interval tertutup}\: [0,2]\\ &\Leftrightarrow \quad m_{2}=2-\sqrt{2}\: \: (\textbf{memenuhi}) \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 4.&\textrm{Diberikan fungsi}\\ &f(x)=\left\{\begin{matrix}\displaystyle \frac{3}{x^{2}}\: ,\: \textrm{pada}\: \: [1,2]\\ \\ 0,\: \:  \textrm{pada}\: \: x\: \: \textrm{yang lain} \end{matrix}\right.\\ &\textrm{Selidikilah apakah fungsi tersebut}\\ &\textrm{fungsi probabilitas atau bukan}\\\\ &\textbf{Bukti}:\\ &\begin{aligned}&\textrm{Kita selidiki apakah}\: \: 0\leq f(x)\leq 1\\ &f(0)=0,\: f(1)=3,\: f(2)=\displaystyle \frac{3}{2^{3}}=\frac{3}{8}\\ &\textrm{Karena terdapat}\: f(1)=3\geq 1,\: \textrm{maka}\\ &\textrm{telah ditunjuan bahwa fungsi}\: \: f(x)\\ &\textrm{tersebut bukan}\: \textbf{fungsi distribusi}\\ &\textbf{probabilitas} \end{aligned} \end{array}$.

DAFTAR PUSTAKA
  1. Kurnia, N., dkk. 2018. Jelajah Matematika SMA Kelas XII Peminatan MIPA. Bogor: YUDHISTIRA.
  2. Tasari. Aksin, N., Miyanto, Muklis. 2016. Matematika untuk SMA/MA Kelas XII Peminatan Matematika dan Ilmu-Ilmu Alam. Klaten: INTAN PARIWARA.



Contoh Soal 3 Distribusi Binomial

 $\begin{array}{ll}\\ 11.&\textrm{Suatu tes dengan pilihan jawaban }\\ &\textrm{benar-salah berjumlah 8 soal}\\ &\textrm{Supaya lulus tes, peserta diharuskan }\\ &\textrm{menjawab benar minimal 50}\%\\ &\textrm{Peluang seseorang dianggap lulus tes }\\ &\textrm{adalah}\: ....\\ &\textrm{a}.\quad \displaystyle 0,2188\qquad\qquad\quad\qquad \quad\textrm{d}.\quad 0,6367\\ &\textrm{b}.\quad \displaystyle \color{red}0,2734\quad \: \color{black}\textrm{c}.\quad 0,3633\quad\quad \textrm{e}.\quad 0,7266\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&p=\textbf{Peluang benar}=\displaystyle \frac{1}{2},\qquad \textrm{dan}\: \: \\ &q=\textbf{Peluang Salah}=1-\displaystyle \frac{1}{2}=\frac{1}{2}\\ &f(x)=P(X=x)=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}.q^{n-x}\\ &\textrm{maka}\\ &P\left ( X=50\%(8)=4 \right )=\begin{pmatrix} 8\\ 4 \end{pmatrix}\times \left ( \displaystyle \frac{1}{2} \right )^{4}\times \left ( \frac{1}{2} \right )^{8-4}\\ &\qquad =\displaystyle \frac{8!}{4!\times 4!}\left ( \displaystyle \frac{1}{2} \right )^{4+4}\\ &\qquad =70\times \displaystyle \frac{1}{256}\\ &\qquad =\color{red}0,2734 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 12.&\textrm{Sebuah kotak berisi 20 bola dengan }\\ &\textrm{rincian 12 boal berwarna kuning dan }\\ &\textrm{sisanya berwarna hijau. Dari kotak} \\ &\textrm{diambil 6 bola secara acak. Peluang}\\ &\textrm{terambil 4 bola hijau adalah}....\\ &\textrm{a}.\quad \displaystyle 0,1238\quad\quad\qquad\qquad \qquad\textrm{d}.\quad 0,8132\\ &\textrm{b}.\quad \color{red}\displaystyle 0,1382\: \quad \color{black}\textrm{c}.\quad 0,3110\quad\quad \textrm{e}.\quad 0,9590\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&p=\textbf{Peluang bola kuning}\\ &\: \: =\displaystyle \frac{C_{1}^{12}}{C_{1}^{20}}=\displaystyle \frac{12}{20}=\frac{3}{5},\\ &q=\textbf{Peluang bola hijau}=1-\displaystyle \frac{3}{5}=\frac{2}{5}\\ &f(x)=P\left ( X=x \right )=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}.q^{n-x}\\ &\textrm{maka}\\ &f(4)=\begin{pmatrix} 6\\ 4 \end{pmatrix}\times \left ( \displaystyle \frac{2}{5} \right )^{4}\times \left ( \frac{3}{5} \right )^{6-4}\\ &\qquad =\displaystyle \frac{6!}{2!\times 4!}\left ( \displaystyle \frac{16}{625} \right )\times \left ( \displaystyle \frac{9}{25} \right )\\ &\qquad =15\times \displaystyle \frac{144}{15625}=\frac{2160}{15625}\\ &\qquad =\color{red}0,1382 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 13.&\textrm{Dua dadu dilambungkan 5 kali}\\ &\textrm{Peluang muncul pasangan mata dadu}\\ &\textrm{berjumlah 4 sampai dengan 7 }\\ &\textrm{sebanyak 4 kali adalah}\: ....\\ &\textrm{a}.\quad \displaystyle 0,1503\: \: \: \: \qquad\qquad\quad\quad \quad\textrm{d}.\quad 0,1583\\ &\textrm{b}.\quad \displaystyle 0,1553\quad \textrm{c}.\quad \color{red}0,1563\quad\quad \color{black}\textrm{e}.\quad 0,1593\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&p=\textbf{Peluang mata dadu berjumlah 4 sampai 7}\\ &\: \: =\displaystyle \frac{18}{36}=\frac{1}{2},\qquad \textrm{dan}\: \: \\ &q=\textbf{Peluang bola hijau}=1-\displaystyle \frac{1}{2}=\frac{1}{2}\\ &f(x)=P\left ( X=x \right )=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}.q^{n-x}\\ &f(4)=P\left ( X=4 \right )=\begin{pmatrix} 5\\ 4 \end{pmatrix}\times \left ( \displaystyle \frac{1}{2} \right )^{4}\times \left ( \frac{1}{2} \right )^{5-4}\\ &\qquad =\displaystyle \frac{5!}{1!\times 4!}\left ( \displaystyle \frac{1}{16} \right )\times \left (\frac{1}{2} \right )\\ &\qquad =5\times \displaystyle \frac{1}{32}=\frac{5}{32}\\ &\qquad =\color{red}0,1563 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 14.&\textrm{Peluang seseorang sembih dari }\\ &\textrm{penyakit jantung adalah 0,6}\\ &\textrm{Jika 7 orang penderita ini menjalani }\\ &\textrm{operasi, maka peluang 3 sampai}\\ &\textrm{6 orang sembuh adalah}... .\\ &\textrm{a}.\quad \displaystyle 0,0629\qquad\qquad\quad\qquad \quad\textrm{d}.\quad \color{red}0,6822\\ &\textrm{b}.\quad \displaystyle 0,2613\quad \textrm{c}.\quad 0,2898\quad\quad \: \textrm{e}.\quad 0,9720\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&p=\textbf{Peluang sembuh}=0,6,\qquad \textrm{maka}\: \: \\ &q=\textbf{Peluang tidak sembuh}=1-0,6=0,4\\ &f(x)=P\left ( X=x \right )=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}.q^{n-x}\\ &\textrm{maka}\\ &P\left ( 3\leq X\leq 6 \right )=P\left ( X\leq 6 \right )-P\left ( X\leq 3 \right )\\ &=C_{4}^{7}(0,6)^{4}(0,4)^{3}+C_{5}^{7}(0,6)^{5}(0,4)^{2}+C_{6}^{7}(0,6)^{6}(0,4)^{1}\\ &=35\times 0,0082944+21\times 0,0124416+7\times 0,0186624\\ &=0,290304+0,2612736+0,1306368\\ &=\color{red}0,6822144 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 15.&\textrm{Peluang seseorang mendapatkan reaksi }\\ &\textrm{buruk setelah disuntik adalah 0,0005}\\ &\textrm{Dari 4000 orang yang disuntik, maka }\\ &\textrm{peluang seseorang mendapatkan reaksi}\\ & \textrm{ada 2 orang adalah}.....\\ &\textrm{a}.\quad \displaystyle \frac{1}{2}e^{-2}\\ &\textrm{b}.\quad e^{-2}\\ &\textrm{c}.\quad \color{red}2e^{-2}\\ &\textrm{d}.\quad \displaystyle \frac{1}{2}e^{2}\\ &\textrm{e}.\quad 2e^{2}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Di atas adalah contoh kasus }\\ &\textrm{permasalahan}\: \: \textbf{Distribusi Poisson}\\ &P\left ( X=x \right )=f(x)=\left\{\begin{matrix} \displaystyle \frac{e^{-\lambda }.\lambda ^{x}}{x!}\: \: ,\: \: x=0,1,2,3,\cdots \\\ 0,\quad \textrm{untuk}\: \: x\: \: \textrm{yang lain} \end{matrix}\right.\\ &P\left ( X=2 \right )=\displaystyle \frac{e^{-np}.(np)^{2}}{2!}\\ &\qquad =\displaystyle \frac{e^{-(4000.0,0005)}.(4000.0,0005)^{2}}{2!}\\ &\qquad =\displaystyle \frac{e^{-2}.2^{2}}{2}\\ &\qquad =\color{red}2e^{-2} \end{aligned} \end{array}$

Contoh Soal 2 Distribusi Binomial

 $\begin{array}{ll}\\ 6.&\textrm{Pengundian terhadap mata uang }\\ &\textrm{yang homogen sebanyak 10 kali}\\ &\textrm{Peluang untuk mendapatkan 6 }\\ &\textrm{muka angka adalah}\: ....\\ &\textrm{a}.\quad 0,1172\\ &\textrm{b}.\quad \color{red}0,2051\\ &\textrm{c}.\quad 0,2461\\ &\textrm{d}.\quad 0,2651\\ &\textrm{e}.\quad 0,2852\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&p=\textbf{Peluang Angka}=\displaystyle \frac{1}{2},\quad \textrm{dan}\: \: \\ &q=\textbf{Bukan Angka}\\ &\: \: =\textbf{Peluang Gambar}=1-\displaystyle \frac{1}{2}=\frac{1}{2}\\ &f(x)=P(x;n;p)=P(X=x)=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ &\textrm{maka}\\ &f(x)=P\left ( X=x \right )=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}.q^{n-x}\\ &f(6)=P\left ( X=6 \right )=\begin{pmatrix} 10\\ 6 \end{pmatrix}\times \left ( \displaystyle \frac{1}{2} \right )^{6}\times \left ( \frac{1}{2} \right )^{10-6}\\ &\qquad =\displaystyle \frac{10!}{6!\times 4!}\left ( \displaystyle \frac{1}{2} \right )^{6+4}\\ &\qquad =210\times \displaystyle \frac{1}{1024}\\ &\qquad =\color{red}0,2051 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 7.&\textrm{Pada pengundian terhadap mata uang identik},\\ &\textrm{sebanyak 10 kali, peluang distribusi binomial} \\ &\textrm{untuk mendapatkan 7 muka gambar adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.\quad \displaystyle 0,2653&&\textrm{d}.\quad \displaystyle 0,7522\\ \textrm{b}.\quad \displaystyle \color{red}0,1172&\textrm{c}.\quad \displaystyle 0,2653&\textrm{e}.\quad 0,2422 \end{array}\\\\ &\textrm{Jawab}:\\ &\textrm{Uraian berikut sekaligus tambahan}\\ &\textrm{penjelasan pada uraian jawaban}\\ &\color{blue}\textrm{soal no. 6 di atas}\\ &\begin{aligned}f(x)&=P(x;n;p)=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ &\textrm{Ingat sebuah koin ada 2 muka}\\ &\textrm{yaitu muka gambar (G) dan angka (A)}\\ &\color{red}\textrm{misalkan}\\ &A=\textrm{kejadian muncul muka gambar}\\ &\textrm{maka peluangnya adalah}\: \: \displaystyle \frac{1}{2}\\ &\textrm{Selanjutnya di sini disimbolkan dengan}\: \: \: \color{blue}p=\displaystyle \frac{1}{2}\\ &\color{red}\textrm{Demikian juga misalkan}\\ &B=\textrm{kejadian muncul muka angka}\\ &\textrm{maka peluang juga}\: \displaystyle \frac{1}{2}\\ &\textrm{Di sini dituliskan dengan}\: \: \: \color{blue}q=\displaystyle \frac{1}{2}\\ f(7)&=\begin{pmatrix} 10\\ 7 \end{pmatrix}\left ( \displaystyle \frac{1}{2} \right )^{7}\left ( \displaystyle \frac{1}{2} \right )^{10-7}\\ &=\begin{pmatrix} 10\\ 7 \end{pmatrix}\left ( \displaystyle \frac{1}{2} \right )^{7}\left ( \displaystyle \frac{1}{2} \right )^{3}\\ &=\displaystyle \frac{10!}{7!\times (10-7)!}\left ( \displaystyle \frac{1}{2} \right )^{7+3}\\ &=\displaystyle \frac{10.9.8.\not{7!}}{\not{7!}.3.2.1}\left ( \displaystyle \frac{1}{1024} \right ) \\ &=\color{red}0,1172 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 8.&\textrm{Sebuah uang logam dilempar sebanyak 8}\\ &\textrm{kali. Peluang muncul gambar sebanyak}\\ &\textrm{5 kali adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\displaystyle \frac{3}{32}&&&\textrm{d}.&\displaystyle \color{red}\frac{7}{32}\\\\ \textrm{b}.&\displaystyle \frac{4}{32}&\textrm{c}.&\displaystyle \frac{5}{32}&\textrm{e}.&\displaystyle \frac{9}{32} \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}f(x)&=P(x;n;p)=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ f(5)&=\begin{pmatrix} 8\\ 5 \end{pmatrix}\left ( \displaystyle \frac{1}{2} \right )^{5}\left ( \displaystyle \frac{1}{2} \right )^{8-5}\\ &=\begin{pmatrix} 8\\ 5 \end{pmatrix}\left ( \displaystyle \frac{1}{2} \right )^{5}\left ( \displaystyle \frac{1}{2} \right )^{3}\\ &=\displaystyle \frac{8!}{5!\times (8-5)!}\left ( \displaystyle \frac{1}{2} \right )^{5+3}\\ &=\displaystyle \frac{8.7.6.5!}{5!.3.2.1}\left ( \displaystyle \frac{1}{256} \right ) \\ &=\displaystyle \frac{8.7}{256}\\ &=\color{red}\displaystyle \frac{7}{32} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 9.&\textrm{Pada pelemparan sebuah koin sebanyak 4 kali}\\ &\textrm{Peluang didapatkannya dua angka pada} \\ &\textrm{pelemparan tersebut adalah}\: ....\\ &\begin{array}{lllllll}\\ \textrm{a}.\quad \displaystyle 0,123&&\textrm{d}.\quad \displaystyle 0,232\\ \textrm{b}.\quad \displaystyle 0,135&\textrm{c}.\quad \displaystyle 0,154&\textrm{e}.\quad \color{red}0,375 \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}f(x)&=P(x;n;p)=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ f(2)&=\begin{pmatrix} 4\\ 2 \end{pmatrix}\left ( \displaystyle \frac{1}{2} \right )^{2}\left ( \displaystyle \frac{1}{2} \right )^{4-2}\\ &=\begin{pmatrix} 4\\ 2 \end{pmatrix}\left ( \displaystyle \frac{1}{2} \right )^{2}\left ( \displaystyle \frac{1}{2} \right )^{2}\\ &=\displaystyle \frac{4!}{2!\times (4-2)!}\left ( \displaystyle \frac{1}{2} \right )^{2+2}\\ &=\displaystyle \frac{4.3.2!}{2!.2.1}\left ( \displaystyle \frac{1}{16} \right ) \\ &=\color{red}0,375 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 10.&\textrm{Dari data survei didapatkan bahwa}\\ &\textrm{satu dari lima orang telah berkunjung}\\ &\textrm{ke dokter dalam sembarang bulan yang}\\ &\textrm{ditanyakan. Jika 10 orang dipilih secara}\\ &\textrm{acak, peluang 3 orang telah berkunjung}\\ &\textrm{ke dokter bulan lalu adalah}\: ....\\ &\begin{array}{llllllll}\\ \textrm{a}.&\displaystyle 0,125&&&\textrm{d}.&\displaystyle \color{red}0,201\\\\ \textrm{b}.&\displaystyle 0,174&\textrm{c}.&\displaystyle 0,182&\textrm{e}.&\displaystyle 0,423 \end{array}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}f(x)&=P(x;n;p)=\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ f(3)&=\begin{pmatrix} 10\\ 3 \end{pmatrix}\left ( \displaystyle \frac{1}{5} \right )^{3}\left ( \displaystyle \frac{4}{5} \right )^{10-3}\\ &=\begin{pmatrix} 10\\ 3 \end{pmatrix}\left ( \displaystyle \frac{1}{5} \right )^{3}\left ( \displaystyle \frac{4}{5} \right )^{7}\\ &=\displaystyle \frac{10!}{3!\times 7!}\left ( \displaystyle \frac{1}{125} \right )\left ( \displaystyle \frac{4^{7}}{5^{7}} \right )\\ &=\cdots \\ &=\color{red}\displaystyle 0,201 \end{aligned} \end{array}$


Contoh Soal 1 Distribusi Binomial

 $\begin{array}{ll}\\ 1.&\textrm{Manakah yang merupakan data diskrit dari pernyataan berikut}\\ &\textrm{a}.\quad \textrm{Suhu Badan Anton ketika sakit mencapai}\: \: 40^{\circ}C\\ &\textrm{b}.\quad \textrm{Kecepatan mobil yang sedang melaju adalah}\: \: 100\: \: km/jam\\ &\textrm{c}.\quad \textrm{Tinggi tiang bendaera di madrasah Budi adalah 4 m}\\ &\textrm{d}.\quad \color{red}\textrm{Jumlah guru yang mengajar di MA Futuhiyah }\\ &\qquad \color{red}\textrm{sebanyak 30 orang}\\ &\textrm{e}.\quad \textrm{Berat bayi yang baru lahir adalah 3.500 gram}\\\\ &\textrm{Jawab}:\\ &\textrm{Alasannya dikarena hasil mencacah} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Jika Anda mengumpulkan nilai raport}\\ &\textrm{teman-teman sekelas Anda untuk pelajaran}\\ &\textrm{ matematika, maka data yang Anda peroleh }\\ &\textrm{adalah}....\\ &\textrm{a}.\quad \color{red}\textrm{data diskrit}\\ &\textrm{b}.\quad \textrm{data kontinu}\\ &\textrm{c}.\quad \textrm{data kualitatif}\\ &\textrm{d}.\quad \textrm{Populasi}\\ &\textrm{e}.\quad \textrm{Sampel}\\\\ &\textrm{Jawab}:\\ &\textrm{Dengan catatan nilainya cacah} \end{array}$

$\begin{array}{ll}\\ 3.&\textrm{Ukuran yang dihitung dari seluruh data }\\ &\textrm{dalam populasi adalah}\: ....\\ &\textrm{a}.\quad \textrm{data kuantitatif}\\ &\textrm{b}.\quad \textrm{data kualitatif}\\ &\textrm{c}.\quad \textrm{Statistik}\\ &\textrm{d}.\quad \textrm{Statistika}\\ &\textrm{e}.\quad \color{red}\textrm{Parameter}\\\\ &\textrm{Jawab}:\\ &\textrm{Parameter adalah ukuran dari }\\ &\textrm{seluruh data atau populasi} \end{array}$

$\begin{array}{ll}\\ 4.&\textrm{Diketahui distribusi peluang suatu }\\ &\textrm{variabel acak diskrit sebagai berikut}\\ &\begin{array}{|c|c|c|c|c|}\hline x&0&1&2&3\\\hline f(x)&m&0,26&3m&0,42\\\hline \end{array}\\ &\textrm{Peluang nilai X minimal berharga 2 adalah}\\ &\textrm{a}.\quad 0,24\\ &\textrm{b}.\quad 0,34\\ &\textrm{c}.\quad 0,42\\ &\textrm{d}.\quad 0,58\\ &\textrm{e}.\quad \color{red}0,66\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\textrm{Diketahui bahwa}\: \: X\: \: \textrm{adalah variabel }\\ &\textrm{acak diskrit, maka}\: \: \sum f(x)=1\\ &F(c)=P(X\leq c)=\displaystyle \sum_{x=0}^{x=c}f(x)\\ &=f(0)+f(1)+f(2)+f(3)+\cdots +f(c)=1\\ &\textrm{dalam hal soal}\: \textrm{di atas, maka kita tentukan}\\ &\textrm{nilai}\: \: \color{blue}m\: \: \color{black}\textrm{dulu}\\ &F(3)=P(X\leq 3)=\displaystyle \sum_{x=0}^{x=3}f(x)\\ &=f(0)+f(1)+f(2)+f(3)=1\\ &1=m+0,26+3m+0,42=4m+0,68\\ &4m=1-0.68=0,32\\ &m=0.08, \qquad \textrm{sehingga}\\ &P(2\leq X\leq 3)=f(2)+f(3)=3m+0,42\\ &=3(0,08)+0,42=0,24+0,42=\color{red}0,66 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 5.&\textrm{Diketahui fungsi peluang suatu }\\ &\textrm{variabel acak kontinu adalah}\\ &f(y)=\left\{\begin{matrix} 0,\quad \textrm{untuk \textit{y} yang lain}\\\\ \displaystyle \frac{2y+k}{50},\: \: \textrm{untuk}\: \: 0\leq y\leq 5 \end{matrix}\right.\\ &\textrm{Nilai}\: \: P\left ( \left | Y-1 \right |\leq 2 \right )\: \: \textrm{adalah}....\\ &\textrm{a}.\quad \displaystyle \frac{7}{25}\qquad\qquad\qquad\qquad \textrm{d}.\quad \frac{14}{25}\\\\ &\textrm{b}.\quad \displaystyle \frac{9}{25}\qquad \textrm{c}.\quad \color{red}\frac{12}{25}\qquad\quad \color{black}\textrm{e}.\quad \frac{18}{25}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&\int_{0}^{5}\displaystyle \frac{2y+k}{50}\: dy=1\\ &1=\int_{0}^{5}\displaystyle \frac{2y+k}{50}\: dy\\ &50=\int_{0}^{5}(2y+k)dy\\ &50=y^{2}+ky|_{0}^{5}=5^{2}+5k=25+5k\\ &k=5\\ &\color{blue}P(\left | Y-1 \right |\leq 2)=P\left ( -2\leq Y-1\leq 2 \right )\\ &=P\left ( -1\leq Y\leq 3 \right )\\ &=f(-1)+f(0)+f(1)+f(2)+f(3)\\ &=\int_{0}^{3}\left ( \displaystyle \frac{2y+5}{50} \right )dy\\ &=\displaystyle \frac{1}{50}\left ( y^{2}+5y \right )|_{0}^{3}\\ &=\displaystyle \frac{1}{50}\left ( 9+15 \right )=\displaystyle \frac{24}{50}=\color{red}\frac{12}{25} \end{aligned} \end{array}$


Lanjutan Distribusi Binomial

 $\color{blue}\begin{aligned}\textrm{D}.\quad&\textrm{Binomial Newton} \end{aligned}$

 $\color{blue}\begin{aligned}\textrm{D. 1}.\quad&\textrm{Binomial Newton} \end{aligned}$

$\begin{aligned}&\textrm{Perhatikanlah susunan bilangan berikut}\\\\ &\begin{array}{|c|l|}\hline &\\ 1=C_{0}^{\color{red}1}\quad 1=C_{1}^{\color{red}1}&(a+b)^{\color{red}1}\\ &\\ 1=C_{0}^{\color{red}2}\quad 2=C_{1}^{\color{red}2}\quad 1=C_{2}^{\color{red}2}&(a+b)^{\color{red}2}\\ &\\ 1=C_{0}^{\color{red}3}\quad 3=C_{1}^{\color{red}3}\quad 3=C_{2}^{\color{red}3}\quad 1=C_{3}^{\color{red}3}&(a+b)^{\color{red}3}\\ &\\ 1=C_{0}^{\color{red}4}\quad 4=C_{1}^{\color{red}4}\quad 6=C_{2}^{\color{red}4}\quad 4=C_{3}^{\color{red}4}\quad 1=C_{4}^{\color{red}4}&(a+b)^{\color{red}4}\\ \vdots &\: \: \quad\vdots \\ dst&(a+b)^{\color{red}\cdots }\\ &\\ \vdots&\: \: \quad\vdots \\ &(a+b)^{\color{red}n}\\\hline \end{array}\\\\ &\textrm{Susunan bilangan-bilangan di atas selanjutnya}\\ &\textrm{dinamakan}\: \: \: \textbf{Segitiga Pascal}\\ & \end{aligned}$

$\begin{aligned}&\textrm{Bilangan}\: \: C_{r}^{n}=\begin{pmatrix} n\\ r \end{pmatrix}\: \: \textrm{merupakan koefisien}\\ &\textrm{dari binomial}\: \: (a+b)^{n}\\ &\textrm{Selanjutnya perhatikanlah bahwa untuk}\\ &n=1,2,3,4,\cdots \: \: \: \textrm{berlaku}\\ &\color{red}\begin{aligned}(a+b)^{n}\color{black}=\, &\color{red}C_{0}^{n}a^{n}b^{0}+C_{1}^{n}a^{n-1}b^{1}+C_{2}^{n}a^{n-2}b^{2}\\ &+C_{3}^{n}a^{n-3}b^{3}+\cdots +C_{n-3}^{n}a^{3}b^{n-3}\\ &+C_{n-2}^{n}a^{2}b^{n-2}+C_{n-1}^{n}a^{1}b^{n-1}+C_{n}^{n}a^{0}b^{n}\\ &\color{black}=\displaystyle \sum_{r=0}^{n}C_{r}^{\color{red}n}a^{\color{red}n\color{black}-r}b^{r} \end{aligned}\\ & \end{aligned}$

$\color{blue}\textrm{D. 2 Perluasan Binomial Newton}$

$\begin{aligned}&\textrm{Untuk bilangan real}\: \: n\: \: \textrm{dan bilangan}\\ &\textrm{non negatif}\: \: r,\: \: \textrm{serta}\: \: \left | A \right |<1,\: \textrm{berlaku}:\\ &(1+A)^{n}=\displaystyle \sum_{r=0}^{n}C_{r}^{n}A^{r} \end{aligned}$

$\color{blue}\textrm{D. 3 Teorema Multinomial}$

Pada bentuk multinomial dengan ekspresi  $(x_{1}+x_{2}+x_{3}+\cdots +x_{r})^{n}$  dengan n dan r bilangan bulat positif, maka koefisien dari  $\color{red}x_{1}^{n_{1}}x_{2}^{n_{2}}x_{3}^{n_{3}}\cdots x_{r}^{n_{r}}$   adalah  $\displaystyle \frac{n!}{n_{1}!n_{2}!n_{3}!\cdots n_{r}!}$  dinotasikan dengan  $\begin{pmatrix} n\\\\ n_{1},n_{2},n_{3},\cdots ,n_{r} \end{pmatrix}$

$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Misalkan untuk}\: \: n\: \: \textrm{bilangan bulat}\\ &\textrm{Positif. Tunjukklan bahwa}\\ &\textrm{a}.\quad (1+x)^{n}=\displaystyle \sum_{r=0}^{n}C_{r}^{n}x^{r}=\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}x^{r}\\ &\textrm{b}.\quad \begin{pmatrix} n\\ 0 \end{pmatrix}+\begin{pmatrix} n\\ 1 \end{pmatrix}+\begin{pmatrix} n\\ 2 \end{pmatrix}+\cdots +\begin{pmatrix} n\\ n \end{pmatrix}=2^{n}\\\\ &\textbf{Bukti}\\ &\color{red}\begin{aligned}\color{black}\textrm{a}.\quad(1+x)&^{n}\\ \color{black}=\, &\color{red}C_{0}^{n}1^{n}x^{0}+C_{1}^{n}1^{n-1}x^{1}+C_{2}^{n}1^{n-2}x^{2}\\ &+C_{3}^{n}1^{n-3}x^{3}+\cdots +C_{n-3}^{n}1^{3}x^{n-3}\\ &+C_{n-2}^{n}1^{2}x^{n-2}+C_{n-1}^{n}1^{1}x^{n-1}+C_{n}^{n}1^{0}x^{n}\\ =\, &\color{red}C_{0}^{n}+C_{1}^{n}x+C_{2}^{n}x^{2} +C_{3}^{n}x^{3}+\cdots \\ &+C_{n-3}^{n}x^{n-3} +C_{n-2}^{n}x^{n-2}+C_{n-1}^{n}x^{n-1}\\ &+C_{n}^{n}x^{n}\\ \color{black}\textrm{atau}&\: \color{black}\textrm{dengan bentuk lain}\\ =\, &\begin{pmatrix} n\\ 0 \end{pmatrix}+\begin{pmatrix} n\\ 1 \end{pmatrix}x+\begin{pmatrix} n\\ 2 \end{pmatrix}x^{2}+\begin{pmatrix} n\\ 3 \end{pmatrix}x^{3}\\ &+\cdots +\begin{pmatrix} n\\ n-3 \end{pmatrix}x^{n-3}+\begin{pmatrix} n\\ n-2 \end{pmatrix}x^{n-2}\\ &+\begin{pmatrix} n\\ n-1 \end{pmatrix}x^{n-1}+\begin{pmatrix} n\\ n \end{pmatrix}x^{n}\\ \color{black}=&\color{black}\displaystyle \sum_{r=0}^{n}\begin{pmatrix} \color{red}n\\ r \end{pmatrix}x^{r} \end{aligned}\\ &\color{red}\begin{aligned}\color{black}\textrm{b}.\quad(1+x)&^{n}\: \: \color{black}\textrm{lihat jawaban poin}\: \: a,\: \: \textrm{saat}\: \: \color{blue}x=1\\ \color{black}(1+1)&^{n}\color{red} \color{black}=\color{red}\begin{pmatrix} n\\ 0 \end{pmatrix}+\begin{pmatrix} n\\ 1 \end{pmatrix}1+\begin{pmatrix} n\\ 2 \end{pmatrix}1^{2}+\begin{pmatrix} n\\ 3 \end{pmatrix}1^{3}\\ &+\cdots +\begin{pmatrix} n\\ n-3 \end{pmatrix}1^{n-3}+\begin{pmatrix} n\\ n-2 \end{pmatrix}1^{n-2}\\ &+\begin{pmatrix} n\\ n-1 \end{pmatrix}1^{n-1}+\begin{pmatrix} n\\ n \end{pmatrix}1^{n}\\ \color{black}(2)&^{n}\color{red} \color{black}=\color{red}\begin{pmatrix} n\\ 0 \end{pmatrix}+\begin{pmatrix} n\\ 1 \end{pmatrix}+\begin{pmatrix} n\\ 2 \end{pmatrix}+\begin{pmatrix} n\\ 3 \end{pmatrix}\\ &+\cdots +\begin{pmatrix} n\\ n-1 \end{pmatrix}+\begin{pmatrix} n\\ n \end{pmatrix}\\ \color{black}=&\color{black}\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}\\ \color{black}\textrm{Sehing}&\color{black}\textrm{ga}\\ 2^{n}&=\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Misalkan untuk}\: \: n\: \: \textrm{bilangan bulat}\\ &\textrm{Positif. Tunjukklan bahwa}\\ & \begin{pmatrix} n\\ 0 \end{pmatrix}-\begin{pmatrix} n\\ 1 \end{pmatrix}+\begin{pmatrix} n\\ 2 \end{pmatrix}-\cdots +(-1)^{n}\begin{pmatrix} n\\ n \end{pmatrix}=0\\\\ &\textbf{Bukti}\\ &\textrm{Sebelumnya diketahui bahwa}\\ &\begin{aligned}&(a+b)^{n}=\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}a^{n-r}b^{r}\\ &\qquad\qquad\qquad \color{blue}\textrm{atau}\\ &\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}a^{n-r}b^{r}=(a+b)^{n}\\ &\blacklozenge \quad \textrm{saat}\: \: \color{blue}a=b=1,\: \: \color{black}\textrm{maka}\\ &\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}1^{n-r}1^{r}=(1+1)^{n}\\ &\Leftrightarrow \displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}=2^{n}\: ...\: (\color{red}\textrm{bukti no. 1.b})\\ &\blacklozenge \quad \textrm{saat}\: \: \color{blue}a=1\: \&\: b=-1\: \: \color{black}\textrm{maka}\\ &\displaystyle \sum_{r=0}^{n}\begin{pmatrix} n\\ r \end{pmatrix}1^{n-r}(-1)^{r}=(1-1)^{n}=0\\ &\textrm{Sehingga}\\ &\begin{pmatrix} n\\ 0 \end{pmatrix}-\begin{pmatrix} n\\ 1 \end{pmatrix}+\begin{pmatrix} n\\ 2 \end{pmatrix}-\cdots +(-1)^{n}\begin{pmatrix} n\\ n \end{pmatrix}=0\quad \blacksquare \end{aligned} \end{array}$

 $\color{blue}\begin{aligned}\textrm{E}.\quad&\textrm{Distribusi Binomial} \end{aligned}$

Perhatikan materi Binomial Newton di atas berkaitan dengan distribusi binomial. Misalkan suatu kejadian yang hanya memberikan dua hasil saja  $\color{red}a$  dan  $\color{red}b$ saja seperti melambungkan sebuah uang koin yang akan menghasilkan 2 hasil saja yang mungkin, yaitu antara sisi gambar $\color{red}G$ atau muncul sisi angka $\color{red}A$ atau pada contoh lainnya adalah ketika seseorang yang menunggu hasil hasil ujian yang jelas hasilnya kemungkinannya cuma dua, yaitu lulus atau tidak lulus.

Percobaan acak yang hanya memberikan 2 hasil saja disebut percobaan $\color{red}Bernoulli$. Selanjujtnya percobaan Bernoulli yang dilakukan sebanyak $\color{blue}n$ kali dinamakan dengan  $\color{red}\textrm{percobaan}\: \textrm{Binomial}$.

Variabel acak $\color{red}X$ yanmg mana nilai-nilainya ditentukan oleh hasil dari percobaan binomial disebut sebagai  Variabel Acak Binomial

Berikut ciri-ciri percobaan binomial

  • Percobaan dilakukan secara berulang sebanyak  $\color{red}n$  kali, dengan  $\color{red}n$ bilangan bulat positif
  • Setiap percobaan memiliki dua macam hasil saja dan saling berkomplemen, yaitu kejadian yang diharapkan (disebut sukses) dan kejadian yang tidak diharapkan (disebut tidak sukses)
  • Peluang setiap kejadian bersifat tetap untuk setiap percobaan dan jumlah peluangnya baik sukses maupun yang tidak sukses  sama dengan 1. Misalkan peluang suksesny adalah  $\color{red}p$, maka peluang gagalnya adalah  $\color{red}q=1-p$
  • Setiap percobaan bebas $\color{red}(independent)$ satu sama lainnya, artinya hasil percobaan yang satu tidak mempengaruhi percobaan yang lain.

Secara umum rumus fungsi  $\color{red}\textrm{distribusi binomial}$ adalah:

$\begin{aligned}&f(x)=P(x;n;p)=\color{red}C(n,x)p^{x}q^{n-x}\color{black}=\color{red}\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ &\textbf{Keterangan}:\\ &\bullet \: C(n,x)=\begin{pmatrix} n\\ x \end{pmatrix}=\color{blue}\textrm{koefisien bibonial}\\ &\bullet \: x=\textrm{banyak kejadian yang diharapkan},\\ &\quad\qquad \textrm{dengan nilai}\: \: x=0,1,2,3,\cdots ,n\\ &\bullet \: p=\textrm{peluang kejadian yang diharapkan}\\ &\bullet \: q=\textrm{peluang kejadian yang tidak diharapkan} \end{aligned}$

Jika rumus dari fungsi peluang di atas dijabarkan akan menjadi berupa bentuk penjumlahan, maka

$\begin{aligned}F(t)&=P(X\leq t)\\ &=\displaystyle \sum_{x=0}^{x=t}\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ &=\begin{pmatrix} n\\ 0 \end{pmatrix}p^{0}q^{n-0}+\begin{pmatrix} n\\ 1 \end{pmatrix}+p^{1}q^{n-1}+\begin{pmatrix} n\\ 2 \end{pmatrix}p^{2}q^{n-2}+\cdots +\begin{pmatrix} n\\ t \end{pmatrix}p^{t}q^{n-t} \end{aligned}$

Dan rumus di atas karena tidak sepenuhnya sampai  $\color{red}n$ , maka akan diperoleh fungsi binomial. kumulatif.

Hasil perhitungan $\color{red}f(x)=P(x;n;p)$  juga dapat dilihat dalam tabel distribusi binomial. Sebagai contohnya adalah $\color{red}P(2;4;0,05)$ yang berarti  $\color{red}x=2$, $\color{red}n=4$,  dan  $\color{red}p=0,05$ berikut tabelnya:

(Sumber: Buku Siswa Matematika Kelas XII, penulis Tasari, dkk, 2016; hal :126, PT.INTAN PARIWARA)

Sedangkan untuk mencari nilai fungsi peluang distribusi binomial kumulatif, misalkan diberikan  $F(2)=P(X\leq 2)$  dari  $\color{red}P(2;4;0,05)$  perhatikanlah tabel distribusi untuk distribusi peluang kumulatif dari sumber buku yang sama tetapi terdapat pada halaman berikutnya dengan melihat kolom  $\color{red}p=0,05$  , lalu perhatikan baris  $\color{red}x=2$  untuk  $\color{red}n=2$. Berikut tabelnya


$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Dari sebuah survei didapatkan bahwa}\\ &\textrm{1 dari 5 orang berkata bah dia telah}\\ &\textrm{mengunjungi dokter dalam sembarang}\\ &\textrm{bulan. Jika 10 orang dipilih secara acak}\\ &\textrm{maka peluang 3 orang telah berkunjung}\\ &\textrm{ke dokter pada bulan kemaren adalah}\: ....\\\\ &\textrm{Jawab}:\\ &\begin{aligned}&n=10, \: x=3,\: p=\displaystyle \frac{1}{5},\: q=\frac{4}{5}\\ &\textrm{maka}\\ &P(3;10;\displaystyle \frac{1}{5})=\begin{pmatrix} 10\\ 3 \end{pmatrix}\left ( \displaystyle \frac{1}{5} \right )^{3}\left ( \displaystyle \frac{4}{5} \right )^{7} \end{aligned}\\ &\quad\qquad\qquad=\color{red}0,201 \end{array}$

$\LARGE\colorbox{yellow}{TAMBAHAN}$

$\color{blue}\begin{aligned}\textrm{E}.\quad&\textrm{Dsitribusi Poisson} \end{aligned}$

Perhatikanlah rumus ditribusi binomial berikut

$\begin{aligned}&f(x)=P(x;n;p)\\ &=\color{red}C(n,x)p^{x}q^{n-x}\color{black}=\color{red}\begin{pmatrix} n\\ x \end{pmatrix}p^{x}q^{n-x}\\ \end{aligned}$

Saat harga  $\color{blue}p$ sebagai lmabang sukses tersebut sangat kecil atau kecil sekali dapat juga dikatakan  $\color{blue}p\rightarrow 0$, dan percobaan dilakukan banyak sekali atau  $\color{blue}n\rightarrow \infty$ , maka penggunaan formula binomial akan terasa sulit. Dan untuk tetap mendapatkan nilai seperti hasil pada perhitungan dengan rumus binomial tersebut, maka digunakan pendekatan nilai dengan menggunkan rumus Distribusi Poisson berikut:

$f(x)=P(X=x)=\color{red}P(x;\lambda )=\displaystyle \frac{\lambda ^{x}}{x!}.e^{-\lambda }$

$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{array}{ll}\\ 2.&\textrm{Pada tiap 100 lembarkertas produksi}\\ &\textrm{suatu pabrikdiperkirakan terdapat 1}\\ &\textrm{lembar yang rusak. Tentukanlah}\\ &\textrm{kemungkinan mendapat selembar kertas}\\ &\textrm{dari 20 lembar yang diambil secara acak}\\ &\textrm{dari hasil produksi tersebut}!\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad &n=10, \: x=1,\: p=\displaystyle \frac{1}{100},\: q=\frac{99}{100}\\ &\textrm{maka penghitungan dengan}\\ &\textrm{rumus}\: \textbf{Distribusi Binomial}\\ &P(1;20;\displaystyle \frac{1}{100})=\begin{pmatrix} 20\\ 1 \end{pmatrix}\left ( \displaystyle \frac{1}{100} \right )^{1}\left ( \displaystyle \frac{99}{100} \right )^{19}\\ &=\cdots \\ \textrm{b}.\quad&\textrm{Dengan rumus}\: \textbf{Distribusi poisson}\\ &\bullet \quad n=20\rightarrow \textrm{terlalu besar, dan}\\ &\bullet \quad p=\displaystyle \frac{1}{100}\rightarrow \textrm{terlalu kecil, maka}\\ &\textrm{dengan}\: \: \lambda =np=20\times \displaystyle \frac{1}{100}=\color{blue}0,2\\ &\textrm{dan}\: \: \: e=2,7183\: \: (\textrm{bilangan Euler})\\ &f(x)=P(X=x)=\displaystyle \frac{\lambda ^{x}}{x!}.e^{-\lambda }\\ &f(1)=\displaystyle \frac{(0,2)^{1}.e^{-0,2}}{1!}\\ &\qquad =0,2\times 0,409\\ &\qquad =\color{red}0,0818 \end{aligned} \end{array}$.

Sebagai tambahan penjelasannya bahwa jika nilai-nilai dari variabel acak binomial dan peluangnya ditampilkan dalam bentuk tabel atau grafik, maka diperolah distribusi peluang variabel acak binomial yang selanjutnya dapat disebut juga dengan distribusi binomial dan peluang suatu nilai variabel acak binomial dapat disebut sebagai peluang binomial.

$\LARGE\colorbox{yellow}{CONTOH SOAL}$.

$\begin{array}{ll}\\ 1.&\textrm{Misalkan}\: \: X\: \: \textrm{menyatakan sisi angka (A)}\\ &\textrm{pada pelambungan 3 uang koin, tentukanlah peluang}\\ &\textrm{setiap nilai}\: \:  X\: \: \textrm{yang mungkin}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Perhatikanlah ilustrasi berikut}\\ &\begin{aligned}\color{blue}\textrm{Mula}\:\,&(1)\quad(2)\quad(3)\quad\color{blue}\textbf{Ruang sampel}\quad \textbf{Nilai}\\ \textbf{Mulai}&\left\{\begin{matrix} A\left\{\begin{matrix} A\left\{\begin{matrix} A\rightarrow \color{red}(A,A,A)\rightarrow \rightarrow \rightarrow X=3\\ G\rightarrow (A,A,G)\rightarrow \rightarrow \rightarrow X=2 \end{matrix}\right.\\ G\left\{\begin{matrix} A\rightarrow (A,G,A)\rightarrow \rightarrow \rightarrow X=2\\ G\rightarrow (A,G,G)\rightarrow \rightarrow \rightarrow X=1 \end{matrix}\right. \end{matrix}\right.\\ G\left\{\begin{matrix} A\left\{\begin{matrix} A\rightarrow (G,A,A)\rightarrow \rightarrow \rightarrow X=2\\ G\rightarrow (G,A,G)\rightarrow \rightarrow \rightarrow X=1 \end{matrix}\right.\\ G\left\{\begin{matrix} A\rightarrow (G,G,A)\rightarrow \rightarrow \rightarrow X=1\\ G\rightarrow \color{red}(G,G,G)\rightarrow \rightarrow \rightarrow X=0 \end{matrix}\right. \end{matrix}\right. \end{matrix}\right. \end{aligned}\\ &\textrm{Dengan nilai}\: \: X=\color{red}0,1,2,\: \color{black}\textrm{atau}\: \color{red}3 \end{aligned}\\ &\begin{aligned}f(0)&=P(X=0)=\displaystyle \frac{1}{8}\\ f(1)&=P(X=1)=\displaystyle \frac{3}{8}\\ f(2)&=P(X=2)=\displaystyle \frac{3}{8},\: \: \textrm{serta}\\ f(3)&=P(X=3)=\displaystyle \frac{1}{8}\\ f(4)&=P(X=4)=0\\ f(5)&=P(X=5)=0\\ f(6)&=P(X=6)=0\\ f(7)&=P(X=7)=0\\ f(8)&=P(X=8)=0\\ &\textrm{dan begitu seterusnya} \end{aligned} \end{array}$.

$\begin{array}{ll}\\ 2.&\textrm{Sebuah kotak berisi 4 bola merah dan 6 bola}\\ &\textrm{kuning. Pada percobaan pengambilan sebuah}\\ &\textrm{bola dalam kotak kemdian dikembalikan lagi}\\ &\textrm{dengan}\: \: X\: \: \textrm{menyatakan banyak bola merah}\\ &\textrm{yang diinginkan, tentukan nilai peluang masing}\\ &\textrm{-masing variabel acak}\: \: X\: \: \textrm{jika pengambilan}\\ &\textrm{diulang sebanyak}\: \: n\: \: \textrm{kali} \\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Total bola}=4+6=10\: \: \textrm{bola}\\ &P(M)=\textrm{peluang terambil 1 bola merah}\\ &\: \: \: \qquad=\displaystyle \frac{4}{10}=0,4\\ &P(K)=\textrm{peluang terambil 1 bola tidak merah}\\ &\: \: \: \qquad=1-P(M)=1-0,4=0,6 \end{aligned}\\ &\begin{aligned}&\textrm{Percobaan pengambilan diulang 2 kali}\\ &\textrm{maka}\: \: n=2,\: \: \textrm{sehingga}\: \: X=\color{red}0,1,2\\ &f(0)=P(X=0)=P(KK)\\ &\qquad =P(K)\times P(K)\\ &\qquad =(0,6)\times (0,6)\: \: \textrm{atau bisa ditulis juga}\\ &\qquad =1\times (0,4)^{0}(0,6)^{2}\\ &\qquad =\: _{2}C_{0}(0,4)^{0}(0,6)^{2}\\ &f(1)=P(X=1)=P(KM)\: \: \textrm{atau}\: \: P(MK)\\ &\qquad =P(MK)+P(MK)\\ &\qquad =P(M)\times P(K)+P(K)\times P(M)\\ &\qquad =(0,4)\times (0,6)+(0,6)\times (0,4)\\ &\qquad = 2\times (0,4)^{1}\times (0,6)^{1}\\ &\qquad =\: _{2}C_{1}(0,4)^{1}(0,6)^{1}\\ &f(2)=P(X=2)=P(MM)\\ &\qquad =P(M)\times P(M)\\ &\qquad =(0,4)\times (0,4)\: \: \textrm{atau bisa ditulis juga}\\ &\qquad =\: _{2}C_{2}(0,4)^{2}(0,6)^{0} \end{aligned}\\ &\begin{aligned}&\textrm{Percobaan pengambilan diulang 3 kali}\\ &\textrm{maka}\: \: n=3,\: \: \textrm{sehingga}\: \: X=\color{red}0,1,2,3\\ &f(0)=P(X=0)=P(KKK)\\ &\qquad =P(K)\times P(K)\times P(K)\\ &\qquad =(0,6)\times (0,6)\times (0,6)\\ &\qquad = 1\times (0,4)^{0}(0,6)^{3}\\ &\qquad =\: _{3}C_{0}(0,4)^{0}(0,6)^{3}\\ &f(1)=P(X=1)\\ &\qquad=P(MKK\: \: \textrm{atau}\: \: KMK\: \: \textrm{atau}\: \: KKM)\\ &\qquad =\cdots \\  &\qquad = 3\times (0,4)^{1}\times (0,6)^{2}\\ &\qquad =\: _{3}C_{1}(0,4)^{1}(0,6)^{2}\\ &f(2)=P(X=2)\\ &\qquad=P(MMK\: \: \textrm{atau}\: \: MKM\: \: \textrm{atau}\: \: KMM)\\ &\qquad =\cdots \\  &\qquad = 3\times (0,4)^{2}\times (0,6)^{1}\\ &\qquad =\: _{3}C_{2}(0,4)^{2}(0,6)^{1}\\ &f(3)=P(X=3)=P(MMM)\\ &\qquad =P(M)\times P(M)\times P(M)\\ &\qquad =(0,4)\times (0,4)\times (0,4)\\ &\qquad =1\times (0,4)^{3}\times (0,6)^{0}\\ &\qquad = _{3}C_{3}\times (0,4)^{3}\times (0,6)^{0}  \end{aligned}\\ &\begin{aligned}&\textrm{dst. Sehingga dapat disimpulkan bahwa untuk}\\ &\textrm{kasus di atas rumusnya adalah}\\ &\color{red}f(x)=P(x;\: n;\: p)=\: \color{red}_{n}C_{x}p^{x}q^{n-x} \end{aligned} \end{array}$.

DAFTAR PUSTAKA

  1. Bintari, N. 2009. Master Juara Olimpiade Matematika SMA Nasional dan Internasional. Yogyakarta: PUSTAKA WIDYATAMA.
  2. Kanginan, M., Terzalgi, Y. 2014. Matematika untuk SMA-MA/SMK Kelas XI. Bandung: SEWU.
  3. Rasiman, Rahmawati, N., D. 2012. Matematika Diskrit. Semarang: IKIP PGRI Semarang Press.
  4. Sharma, dkk. 2017. Jelajah Matematika SMA Kelas XII Program Wajib. Jakarta: YUDHISTIRA.
  5. Tasari, Sksin, N., Miyanto, & Muklis. 2016. Matematika untuk SMA/MA Kelas XII Peminatan Matematika dan Ilmu-Ilmu Alam. Klaten: PT. INTAN PARIWARA.
  6. Yuliatun. 2019. Matematika IPA Kelas XII SMA/MA Semester Genap. Solo: INDONESIA JAYA

Distribusi Binomial

 $\color{purple}\textrm{A. Pendahuluan}$

$\begin{aligned}&\left\{\begin{matrix} (1)\: \textrm{Review}\begin{cases} \textrm{Peluang} \begin{cases} \textrm{Populasi} \\ \textrm{Sampel}\begin{cases} \textrm{Acak} \\ \textrm{Bukan Acak}.\quad \end{cases} \end{cases} \\ \textrm{Kombiasi} & \end{cases}\\ (2)\: \textrm{Variabel Acak}\begin{cases} \textrm{Diskrit} & .\qquad\qquad\qquad\qquad \\ \textrm{Kontinue} & \end{cases}\\ (3)\: \textrm{Distribusi}\begin{cases} \textrm{Distribusi Peluang Variabel Acak} & \\ \textrm{Fungsi Distribusi Kumulatif} & \\ \textrm{Variabel Acak Binomial}&\\ \textrm{Distribusi Binomial} \end{cases}\\ \end{matrix}\right. \end{aligned}$

$\color{purple}\textrm{Penjelasan}$

$\begin{array}{|c|l|l|}\hline \textrm{No}&\quad\textrm{Istilah}&\qquad\qquad\qquad\textrm{Penjelasan}\\\hline 1&\textrm{Statistika}&\textrm{Ilmu tentang pengumpulan, pengolahan},\\ &&\textrm{penganalisaan serta penarikan kesimpulan}\\ &&\textrm{data. Selanjutnya akan dibagi dua yaitu}\\ &&\color{blue}\textrm{deskriptif dan inferensia}\\\hline 2&\textrm{Statistik}&\color{red}\textrm{Kumpulan data/ukuran sampel}\\\hline 3&\textrm{Parameter}&\textrm{Ukuran populasi}\\\hline 4&\textrm{Populasi}&\color{blue}\textrm{Keseluruhan/semua anggota objek/data}\\\hline 5&\textrm{Sampel}&\color{blue}\textrm{Subjek/Objek yang mewakili populasi}\\\hline 6&\textrm{Sensus}&\textrm{Penelitian seluruh data (populasi)}\\\hline 7&\textrm{Teknik}&\textrm{Cara pengambilan data terbatas pada}\\ &\textrm{Sampling}&\textrm{sebagian saja dari populasi yang diteliti}\\\hline \end{array}$

$\color{purple}\textrm{lanjutan}$

$\begin{array}{|l|l|l|}\hline \textrm{No}&\textrm{Istilah}&\qquad\qquad\qquad\textrm{Penjelasan}\\\hline 8&\textrm{Cara}&\color{blue}\textrm{atau radom}.\: \textrm{yaitu setiap elemen populasi}\\ &\textrm{Acak}&\textrm{memiliki kesempatan yang yang sama}\\ &&\textrm{sehingga bersifat objektif}\\\hline 9&\textrm{Ruang}&\textrm{Himpunan dari semua hasil yang mungkin}\\ &\textrm{Sampel}&\textrm{dari sebuah percobaan}\\\hline 10&\textrm{Variabel}&\textrm{Suatu fungsi (aturan) yang memetakan }\\ &\textrm{Acak}&\textrm{setiap anggota ruang sampel dengan}\\ &(\textrm{VA})&\textrm{sebuah bilangan riil. Biasanya dinotasikan}\\ &&\textrm{dengan huruf besar, sedangkan nilai}\\ &&\textrm{variabel acaknya dinotasikan dengan}\\ &&\textrm{huruf kecil}\\\hline 11&(\textrm{VA})&\textrm{Jika VA tersebut memiliki sejumlah nilai}\\ &\textrm{Diskrit}&\textrm{yang dapat dihitung(berupa bilangan}\\ &&\textrm{bulat positif)}\\\hline 12&\textrm{VA}&\textrm{Sebaliknya yaitu berupa bilangan yang}\\ &\textrm{Kontinu}&\textrm{tidak bulat}\\\hline \end{array}$

$\color{red}\textrm{Sebagai contoh}$

$\begin{aligned}\textbf{a}\quad&\color{blue}\textrm{Variabel Acak Diskrit (Bilangan bulat positif)}\\ &\bullet \: \: \textrm{Jumlah siswa kelas XII MIA MA FUTUHIYAH}\\ &\: \, \quad \textrm{JEKETRO GUBUG}\\ &\bullet \: \: \textrm{Jumlah guru laki-laki di MA FUTUHIYAH}\\ &\: \, \quad \textrm{JEKETRO GUBUG}\\ &\bullet \: \: \textrm{Jumlah guru dan siswa di MA FUTUHIYAH}\\ &\: \, \quad \textrm{JEKETRO GUBUG yang tidak terpapar}\\ &\: \, \quad \textrm{COVID-19}\\ &\bullet \: \: \textrm{Jumlah motor yang terjual dalam sebulan}\\ \textbf{b}\quad&\color{purple}\textrm{Variabel Acak Kontinu (Bukan bilangan bulat)}\\ &\bullet \: \: \textrm{Jumlah miyak yang tumpah di suatu lantai}\\ &\bullet \: \: \textrm{Ketinggian permukaan air di sebuah waduk}\\ \end{aligned}$

$\color{blue}\textrm{B. Variabel Acak}$

$\begin{array}{|c|l|l|}\hline \textrm{No}&\quad\textrm{Istilah}&\qquad\qquad\qquad\textrm{Definisi}\\\hline 13&\textrm{Variabel}&\textrm{Suatu variabel}\: \: X\: \: \textrm{adalah variabel acak jika}\\ &\textrm{Acak}&\textrm{nilai-nilai yang dimiliki oleh}\: \: X\: \: \textrm{merupakan}\\ &&\textrm{suatu kemungkinan atau peristiwa acak}.\\ &&\color{blue}\textrm{Selanjutnya variabel acak dibedakan}\\ &&\color{blue}\textrm{menjadi dua, yaitu variabel acak diskrit dan}\\ &&\color{blue}\textrm{variabel acak kontinu sebagaimana pada}\\ &&\color{blue}\textrm{penjelasan sebelumnya di atas}\\\hline \end{array}$

$\color{blue}\textrm{C. Distribusi Peluang}$

$\begin{array}{|c|l|l|}\hline \textrm{No}&\quad\textrm{Istilah}&\qquad\qquad\qquad\textrm{Definisi}\\\hline 14&\textrm{Distribusi}&\textrm{Sebuah daftar yang berisi seluruh hasil}\\ &\textrm{Peluang}&\textrm{yang mungkin dari suatu percobaan dan}\\ &(\textrm{Probabilitas})&\textrm{probabilitas yang berkaitan dengan setiap}\\ &&\textrm{hasil tersebut}.\\ &&\color{red}\textrm{Nilai probabilitas berada di antara 0 dan 1}\\ &&\color{blue}\textrm{Jumlah dari seluruh probabilitas hasil harus}\\ &&\color{blue}\textrm{harus sama dengan 1}\\\hline \end{array}$

$\LARGE\colorbox{yellow}{CONTOH SOAL}$

$\begin{array}{ll}\\ 1.&\textrm{Sebuah koin dilempar sebanyak tiga kali}\\ &\textrm{a}.\quad \textrm{tentukan semua titik sampelnya}\\ &\textrm{b}.\quad \textrm{tentukan peluang mendapatkan tepat}\\ &\qquad \textrm{dua gambar}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}\textrm{a}.\: \: \: &\textrm{Sebuah koin hanya memiliki dua muka,}\\ &\textrm{yaitu muka gambar (G) dan muka angka (A)}\\ &\textrm{sehingga setiap pelemparan hanya memiliki}\\ &\textrm{dua kemungkinan, yaitu muncul sisi A atau G}\\ &\textrm{maka ruang sampelnya adalah}:\\ &\begin{aligned} \color{blue}\textrm{Mula}\: \, &(1)\quad (2)\quad (3)\quad \color{blue}\textbf{Ruang sampel}\\ \textbf{Mulai}&\left\{\begin{matrix} A\left\{\begin{matrix} A\left\{\begin{matrix} A\rightarrow (A,A,A)\\ G\rightarrow (A,A,G) \end{matrix}\right.\\ G\left\{\begin{matrix} A\rightarrow (A,G,A)\\ G\rightarrow (A,G,G) \end{matrix}\right. \end{matrix}\right.\\ G\left\{\begin{matrix} A\left\{\begin{matrix} A\rightarrow (G,A,A)\\ G\rightarrow (G,A,G) \end{matrix}\right.\\ G\left\{\begin{matrix} A\rightarrow (G,G,A)\\ G\rightarrow (G,G,G) \end{matrix}\right. \end{matrix}\right. \end{matrix}\right. \end{aligned} \\ &\textrm{Jadi, banyaknya ruang sampel adalah }\color{red}8 \end{aligned}\\ &\begin{aligned}\textrm{b}.\: \: \: &\textrm{Dari ruang sampel yang tepat}\\ &\textrm{ada 2 sisi gambar : AGG,GAG,GGA}\\ &\textrm{sehingga peluangnya}=\displaystyle \frac{3}{\textrm{total ruang sampel}}=\color{red}\frac{3}{8} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 2.&\textrm{Misalkan}\: \: X\: \: \textrm{menyatakan sisi angka (A)}\\ &\textrm{pada soal No.1 di atas, tentukanlah nilai}\\ &X\: \: \textrm{yang mungkin}\\\\ &\textbf{Jawab}:\\ &\begin{aligned}&\textrm{Perhatikanlah ilustrasi berikut}\\ &\begin{aligned} \color{blue}\textrm{Mula}\: \, &(1)\quad (2)\quad (3)\quad \color{blue}\textbf{Ruang sampel}\quad \textbf{Nilai}\\ \textbf{Mulai}&\left\{\begin{matrix} A\left\{\begin{matrix} A\left\{\begin{matrix} A\rightarrow \color{purple}(A,A,A)\rightarrow \rightarrow \rightarrow X=3\\ G\rightarrow (A,A,G)\rightarrow \rightarrow \rightarrow X=2 \end{matrix}\right.\\ G\left\{\begin{matrix} A\rightarrow (A,G,A)\rightarrow \rightarrow \rightarrow X=2\\ G\rightarrow (A,G,G)\rightarrow \rightarrow \rightarrow X=1 \end{matrix}\right. \end{matrix}\right.\\ G\left\{\begin{matrix} A\left\{\begin{matrix} A\rightarrow (G,A,A)\rightarrow \rightarrow \rightarrow X=2\\ G\rightarrow (G,A,G)\rightarrow \rightarrow \rightarrow X=1 \end{matrix}\right.\\ G\left\{\begin{matrix} A\rightarrow (G,G,A)\rightarrow \rightarrow \rightarrow X=1\\ G\rightarrow \color{red}(G,G,G)\rightarrow \rightarrow \rightarrow X=0 \end{matrix}\right. \end{matrix}\right. \end{matrix}\right. \end{aligned}\\ &\textrm{Jadi, nilai}\: \: X\: \: \textrm{yang mungkin}=\color{red}0,1,2,\: \color{black}\textrm{atau}\: \color{red}3 \end{aligned} \end{array}$

Perhatikanlah contoh pada No.2 di atas, nilai  X  ternyata tidak memiliki nilai tunggal. Karena  X  tidak memiliki nilai tunggal, maka  X  selanjutnya disebut dengan variabel. Dan variabel seperti ini yang nilainya ditentukan oleh percobaan sehingga akan mendapatkan beberapa kemungkinan selanjutnya disebut dengan variabel acak. Sehingga  X  pada No.2 di atas adalah salah satu contoh untuk variabel acak. 


Contoh 3 Soal dan Pembahasan Materi Peluang (Faktorial, Permutasi dan Kombinasi)

 $\begin{array}{ll}\\ 11.&\textrm{Dalam suatu rapat mengelilingi meja bundar}\\ &\textrm{yang dihadiri sebanyak 7 orang}\\ &\textrm{a}.\quad \textrm{ada berapa susunan yang terjadi}?\\ &\textrm{b}.\quad \textrm{Jika A dan B bagian dari 7 orang ini}\\ &\qquad \textrm{duduknya selalu berdampingan, maka}\\ &\qquad \textrm{posisi duduk yang terbentuk sejumlah}?\\ &\textrm{c}.\quad \textrm{Jika seperti poin b, tetapi yang}\\ &\qquad \textrm{duduk berdampingan atau saling berdekatan}\\ &\qquad \textrm{adalah A, B, dan C}\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{Diketahui bahwa}\: \: n=7\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Posisi duduk melingkarnya}\\ &=(7-1)!=6!=\color{red}720\\ &\textbf{atau}\\ &n=r=7\: \: \textrm{orang, maka}\\ &=\displaystyle \frac{P(7,7)}{7}=6!=\color{red}720\\ \textrm{b}.\quad&\textrm{Ada syarat A dan B berdampingan, maka}\\ &\textrm{A dan B dihitung 1 objek dulu, sehingga total}\\ &\textrm{objek ada 1 objek ditambah sisanya = 6 objek}.\\ &\textrm{Dari 6 objek ini yang dianggap duduk melingkar}\\ &\textrm{dengan 2 orang (A dan B) bisa gantian posisi}.\\ &\textrm{sehingga}\\ &(6-1)!\times 2!=5!\times 2!=\color{red}240\\ &\textbf{atau}\\ &=\displaystyle \frac{P(6,6)}{6}\times P(2,2)\\ &=5!\times 2!=120\times 2=\color{red}240\\ \textrm{b}.\quad&\textrm{3 orang (A, B, dan C) dianggap 1 objek}\\ &\textrm{dulu sehigga yang duduk posisi melingkar}\\ &\textrm{dianggap 5 orang, sehingga perhitungannya}\\ &=\displaystyle \frac{P(5,5)}{5}\times P(3,3)\\ &=24\times 6=\color{red}144 \end{aligned} \end{array}$

$\begin{array}{ll}\\ 12.&\textrm{Suatu kelompok yang terdiri dari 20 remaja}\\ &\textrm{a}.\quad \textrm{Jika mereka saling berjabat tangan}\\ &\qquad \textrm{seseorang dengan lainnya hanya satu kali}\\ &\qquad \textrm{maka banyak jabat tangan yang terjadi}?\\ &\textrm{b}.\quad \textrm{Jika mereka membentuk regu voly, maka}\\ &\qquad \textrm{berapa banyak regu voly yang terbentuk}?\\ &\textrm{c}.\quad \textrm{Jika mereka membentuk regu sepak bola},\\ &\qquad \textrm{maka banyak regu sepak bola yang terbentuk}?\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{Diketahui bahwa}\: \: n=20\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Karena jabat tangan dilakukan hanya hanya}\\ &\textrm{pada dua remaja yang berbeda dan urutan}\\ &\textrm{tidak diperlukan, maka hal ini persoalan}\\ &\textrm{kombinasi. Sehingga banyaknya jabat tangan}\\ &\begin{pmatrix} n\\ r \end{pmatrix}=\displaystyle \frac{n!}{r!(n-r)!}\\ &\Leftrightarrow \begin{pmatrix} 20\\ 2 \end{pmatrix}=\displaystyle \frac{20!}{2!(20-2)!}=\frac{20!}{2!\times 18!}\\ &\Leftrightarrow \begin{pmatrix} 20\\ 2 \end{pmatrix}=\displaystyle \frac{20.19.\not{18!}}{2.\not{18!}}=\color{red}190\\ \textrm{b}.\quad&\textrm{Karena satu regu voli ada 6 orang, maka}\\ &\begin{pmatrix} 20\\ 6 \end{pmatrix}=\displaystyle \frac{20!}{6!(20-6)!}\\ &\Leftrightarrow \begin{pmatrix} 20\\ 6 \end{pmatrix}=\displaystyle \frac{20!}{6!\times 14!}\\ &\Leftrightarrow \begin{pmatrix} 20\\ 6 \end{pmatrix}=\color{red}\displaystyle \frac{20.19.18.17.16.15.\not{14!}}{720\times \not{14!}}\\ \textrm{c}.\quad&\textrm{Karena satu regu terdiri dari 11 orang},\\ &\textrm{maka}\\ &\begin{pmatrix} 20\\ 11 \end{pmatrix}=\displaystyle \frac{20!}{11!(20-11)!}=\color{red}\frac{20!}{11!\times 9!} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 13.&\textrm{Jajargenjang yang dapat dibuat oleh}\\ &\textrm{himpunan empat garis sejajar yang}\\ &\textrm{berpotongan dengan garis yang terhimpun}\\ &\textrm{dalam 7 garis sejajar adalah}\: ....\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{Diketahui bahwa kombinasi dari dua himpunan}\\ &\textrm{garis sejajar yang masing-masing berjumlah}\\ &\textrm{4 dan 7 garis, maka}\: \color{red}\textrm{banyak jajar genjang}\\ &\begin{aligned}&=\begin{pmatrix} 4\\ 2 \end{pmatrix}\times \begin{pmatrix} 7\\ 2 \end{pmatrix}\\ &=\displaystyle \frac{4!}{2!(4-2)!}\times \frac{7!}{2!\times (7-2)!}\\ &=\displaystyle \frac{4\times 3\times \not{2!}}{2\times \not{2!}}\times \frac{7\times 6\times \not{5!}}{2\times \not{5!}}\\ &=6\times 21\\ &=\color{red}126\: \: \color{black}\textrm{jajar genjang} \end{aligned} \end{array}$

$\begin{array}{ll}\\ 14.&\textrm{Diketahui segi enam beraturan. Tentukanlah}\\ &\textrm{a}.\quad \textrm{Banyak diagonal dapat dibentuk}?\\ &\textrm{b}.\quad \textrm{Banyak segi tiga di dalamnya}?\\ &\textrm{c}.\quad \textrm{Banyak perpotongan diagonal-diagonal}\\ &\qquad \textrm{jika tidak ada titik-titik perpotongan}\\ &\qquad \textrm{yang sama}?\\\\ &\color{blue}\textbf{Jawab}:\\ &\textrm{Diketahui segi}-n\: \: \textrm{dengan}\: \: n=6\\ &\textrm{Dan perlu diingat bahwa di sini tidak diperlukan}\\ &\textrm{urutan mana yang perlu didahulukan, maka}\\ &\textrm{rumus kombinasi yang perlu digunakan, yaitu}\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Banyak diagonalnya adalah}:\\ &\begin{pmatrix} n\\ 2\end{pmatrix}-n=\displaystyle \frac{n(n-3)}{2}\\ &\Leftrightarrow \qquad\quad=\displaystyle \frac{6.(6-3)}{2}=\frac{6.3}{2}=\color{red}9\\ \textrm{b}.\quad&\textrm{Banyaknya segi tiga, berarti melibatkan}\\ &\textrm{tiga garis, maka}\\ &\begin{pmatrix} 6\\ 3 \end{pmatrix}=\displaystyle \frac{6!}{3!\times (6-3)!}=\frac{6\times 5\times 4\times \not{3!}}{6\times \not{3!}}=\color{red}20\\ \textrm{c}.\quad&\textrm{Satu buah titik potong dapat dibentuk}\\ &\textrm{dengan dua garis ekuivalen dengan empat}\\ &\textrm{buah titik sudut, maka banyaknya titik}\\ &\textrm{potong adalah}:\\ &\begin{pmatrix} 6\\ 4 \end{pmatrix}=\displaystyle \frac{6!}{4!\times (6-4)!}=\frac{6!}{4!\times 2!}=\color{red}15 \end{aligned} \end{array}$



$\begin{array}{ll}\\ 15.&\textrm{Perhatikalah dua ilustrasi gambar berikut} \end{array}$
Gambar (1)


Gambar (2)
$\begin{array}{ll}\\ .\quad\: \, &\textrm{Tentukanlah}\\ &\textrm{a}.\quad \textrm{jalur terpendek dari titik A ke B}\\ &\qquad \textrm{pada gambar (1)}\\ &\textrm{b}.\quad \textrm{jalur terpendek dari titik P ke Q}\\ &\qquad \textrm{pada gambar (2)}\\\\ &\textrm{Jawab}:\\ &\begin{aligned}\textrm{a}.\quad&\textrm{Perhatikanlah bahwa langkah dari titik A}\\ &\textrm{ke titik B harus terdiri dari 8 langkah, yaitu}\\ &\textrm{3 langkah ke kanan dan 5 langkah ke atas}\\ &\textrm{Karena yang diinginkan lintasan terpendek}\\ &\textrm{dan tidak ada kekhususn harus dimulai dari}\\ &\textrm{mana, maka banyaknya langkah berbdeda}\\ &\textrm{dan terpendek adalah}:\\ &\begin{pmatrix} 8\\ 3 \end{pmatrix}\: \: \color{red}\textrm{atau}\: \: \color{black}\begin{pmatrix} 8\\ 5 \end{pmatrix}.\: \textrm{Misal kita hitung salah}\\ &\textrm{satunya saja}:\\ &\begin{pmatrix} 8\\ 3 \end{pmatrix}=\displaystyle \frac{8!}{3!(8-5)!}=\frac{8!}{3!\times 5!}=\frac{8.7.6.\not{5!}}{6.\not{5!}}=\color{red}56 \end{aligned} \end{array}$
$.\qquad\: \, \begin{aligned}\textrm{b}.\quad&\textrm{Untuk poin b, perhatikanlah ilustrasi}\\ &\textrm{gambar berikut(untuk memudahkan}\\ &\textrm{perhitungan). Tempatkan titik-titik}\\ &\textrm{bantu A, B, C, D, E, dan F seperti}\\ &\textrm{pada gambar berikut} \end{aligned}$

$.\qquad\: \, \begin{aligned}.\quad&\textrm{Perhatikanlah untuk setiap lintasan}\\ &\textrm{terpendek dari titik P ke titik Q}\\ &\textrm{dapat dipastikan akan melewati}\\ &\textrm{titik A, B, C, dan D. Sehingga dari}\\ &\textrm{keempat titik itulah akan diperoleh}\\ &\textrm{rute PAQ, PBQ, PCQ, dan PDQ}.\\ &\textrm{Sehingga banyak rute terpendek dari}\\ &\textrm{titik P ke Q yang selanjutnya kita}\\ &\textrm{simbolkan dengan}\: \: \color{red}\#PQ\: \: \color{black}\textrm{adalah}:\\ &\begin{aligned}\color{red}\#PQ&=\#PAQ+\#PBQ+\#PCQ+\#PDQ\\ &=\begin{pmatrix} 4\\ 0 \end{pmatrix}\begin{pmatrix} 5\\ 0 \end{pmatrix}+\begin{pmatrix} 4\\ 3 \end{pmatrix}\begin{pmatrix} 5\\ 1 \end{pmatrix}+\color{purple}\#PECQ+\#PFCQ+\#PFDQ\\ &=1.1+4.5+\color{purple}\begin{pmatrix} 3\\ 2 \end{pmatrix}\begin{pmatrix} 3\\ 0 \end{pmatrix}\begin{pmatrix} 3\\ 2 \end{pmatrix}\color{black}+\color{purple}\begin{pmatrix} 3\\ 1 \end{pmatrix}\begin{pmatrix} 3\\ 1 \end{pmatrix}\begin{pmatrix} 3\\ 2 \end{pmatrix}\color{black}+\color{purple}\begin{pmatrix} 3\\ 1 \end{pmatrix}\begin{pmatrix} 3\\ 0 \end{pmatrix}\begin{pmatrix} 3\\ 0 \end{pmatrix}\\ &=1+20+\color{purple}3.1.3\color{black}+\color{purple}3.3.3\color{black}+\color{purple}3.1.1\\ &=1+20+9+27+3\\ &=\color{red}60 \end{aligned} \end{aligned}$


DAFTAR PUSTAKA

  1. Bintari, N. 2009. Master Juara Olimpiade Matematika SMA Nasional dan Internasional. Yogyakarta: PUSTAKA WIDYATAMA.
  2. Ibrahim, Mussafi, N, S, M. 2013. Pengantar Kombinatorika dan Teori Graf. Yogyakarta: GRAHA ILMU.
  3. Kanginan, M., Terzalgi, Y. 2014. Matematika untuk SMA-MA/SMK Kelas XI (Wajib). Bandung: SRIKANDI EMPAT WIDYA UTAMA.
  4. Sobirin. 2006. Kompas Matematika: Strategi Praktis Menguasai Tes Matematika (SMA Kelas XI IPA). Jakarta: KAWAN PUSTAKA.
  5. Sukino. 2011. Maestro Olimpiade Matematika SMP Seri B. Jakarta: ERLANGGA.
  6. Susyanto, N, 2012. Tutor Senior Olimpiade Matematika Lima Benua Tingkat SMP. Yogyakarta: KENDI MAS MEDIA.
  7. Tampomas, H. 1999. SeribuPena Matematika SMU Jilid 2 Kelas 2 Berdasarkan Kurikulum 1994 Suplemen CBPP 1999. Jakarta: ERLANGGA.